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This document summarizes the models and the processes of the global market shock
(GMS) component of the severely adverse scenario that the Board of Governors of the Federal
Reserve System (Board) used to produce certain values in the scenarios for the 2026 Supervisory
Stress Test. There were no revisions to this document from the version proposed in October
2025 other than typographical fixes.! Documentation on the other final and proposed models
associated with the Board’s 2026 Supervisory Stress Test is available at the following link:

https://www.federalreserve.gov/supervisionreg/dfa-stress-tests-2026.htm.

I See 90 FR 51762 (November 18, 2025). This proposal was posted to the Board’s public website on October 24,
2025. Board (2025), “Federal Reserve Board requests comment on proposals to enhance the transparency and
public accountability of its annual stress test,” press release, October 24, 2025,
https://www.federalreserve.gov/newsevents/pressreleases/bereg20251024a.htm.
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4 Model Documentation: Statement of Purpose

A. Statement of Purpose

The global market shock component for the severely adverse scenario is a set of
hypothetical shocks to a large set of financial risk factors, such as stock market indices,
currencies, commodities, interest rates, and credit securities, reflecting general financial market
distress and heightened uncertainty. A firm subject to the annual Dodd-Frank Act supervisory
stress tests that has significant trading activity must incorporate the global market shock into the
severely adverse scenario.? In addition, certain large and highly interconnected firms must apply
the same global market shock to project losses under the counterparty default scenario
component. The losses associated with the global market shock are recognized in the first
quarter of the scenario horizon, and no changes to losses or gains are assumed in subsequent
quarters of the scenario. The global market shock is applied to positions held by the firms on a
given as-of date, which was, for example, October 11, 2024, for the 2025 stress test cycle.’ The
stress test scenarios should not be regarded as forecasts; rather, they are hypothetical paths of
economic and financial variables used to assess the strength and resilience of the companies’
capital in various economic and financial environments.

The design and specification of the global market shock component differ from the
design and specification of the severely adverse macroeconomic scenario for several reasons.
First, informed by U.S. Generally Accepted Accounting Principles (U.S. GAAP), profits and

losses from trading and counterparty credit positions are measured in mark-to-market accounting

2 Firms that are subject to the global market shock are those with aggregate trading assets and liabilities of $50
billion or more, or with aggregate trading assets and liabilities equal to 10 percent or more of total consolidated
assets; and are not a Category IV firm under the Board’s tailoring framework. See 12 C.F.R. § 238.143(b)(2)(i); 12
C.F.R. § 252.54(b)(2)(1).

3 A firm may use data as of the date that corresponds to its weekly internal risk reporting cycle as long as it falls
during the business week of the as-of date for the global market shock (e.g., October 7—11, 2024 for the 2025 stress
test).
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5 Model Documentation: Statement of Purpose

terms in the global market shock, while revenues and losses from traditional banking activities,
as generated under macroeconomic scenarios, are generally measured using the accrual
accounting method. Another key difference between the global market shock and the severely
adverse macroeconomic scenario is the timing of loss recognition. The global market shock has
an impact on losses in the first quarter of the severely adverse scenario’s projection horizon,
whereas the severely adverse macroeconomic scenario moves over a nine-quarter projection
horizon. This timing is based on a scenario assumption that market dislocations can happen
rapidly and unpredictably at any time during the scenario horizon. Applying the global market
shock in the first quarter of the stress test projection horizon ensures that potential losses from
trading and counterparty exposures are incorporated into banks’ capital ratios in each quarter of
the severely adverse scenario. In addition, the severely adverse macroeconomic scenario
currently has an as-of date of December 31 of each year, whereas the global market shock as-of
date changes every year and does not necessarily coincide with the year-end.* The global market
shock component is referred to as “scenario” or “global market shock scenario” hereafter.

As discussed in greater detail in Section B below, the global market shock scenario
comprises a large set of financial risk factors. An exhaustive list is provided in the global market
shock template.” The risk factors of the global market shock scenario include, but are not limited

to:

4 The Board has proposed changes to the global market shock as-of date and other aspects of the supervisory stress
test in the Board’s Enhanced Transparency and Public Accountability proposal, published in the fall of 2025.

5 The template is available from the website of the Board. For example, for the 2025 stress test:
https://www.federalreserve.gov/supervisionreg/dfa-stress-tests-2025.htm.
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Model Documentation: Overview of Scenario Design Process

Public equity returns from key advanced economies as well as from developing and
emerging market economies, along with selected points along term structures of equity
option-implied volatilities;

Exchange rates of foreign currencies, along with selected points along term structures of
foreign exchange option-implied volatilities;

Government yields at selected maturities (e.g., 10-year U.S. Treasuries), swap rates, and
other types of interest rates for key advanced economies as well as from developing and
emerging market economies;

Implied volatilities on interest rate options for selected maturities and expiration dates,
which are key inputs to the pricing of interest rate derivatives;

Futures prices at various expiration dates for commodity products such as energy, oil,
metals, and agricultural products; and

Credit spreads or prices for selected credit-sensitive products, including corporate bonds,

credit default swaps (CDS), securitized products, sovereign debt, and municipal bonds.

Overview of Scenario Design Process

The Board generates shock values for all exposures in the global market shock template.

Shock values represent the magnitudes of changes to the financial risk factors in the global

market shock template, and they reflect the severity of market stress that these risk factors

experience in the scenario. Table B1 provides an overview of the shock definitions by asset class

as well as the horizons over which the shocks are calibrated, as discussed further in the following

section. Throughout this document, the terms “financial risk factor shocks” and “shock values”

are used interchangeably.
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Model Documentation: Overview of Scenario Design Process

Table B1 - Overview of Shock Values Generated by the Global Market Shock Scenario Design

Framework

Option-implied volatility

Asset class Spot/futures curve shocks Horizon
shocks
Agencies Option adjusted spread changes to U.S. N/A 1 month
residential agency products, U.S.
commercial agency products, and non-
U.S. agency products across various
ratings.
Commodities  Arithmetic returns to spot prices and Changes to implied 1 month
futures contract prices across maturities  volatilities of commodities.
for commodities.
Foreign Arithmetic returns to spot exchange rates Changes in implied 1 month
exchange of various currencies against the U.S. volatility of foreign
rates dollar. Cross-currency spot exchange exchange options across
rates. various maturities.
Interest rates  Absolute changes to term structures of ~ Changes to interest rate 1 month
government bond yields and swap rates implied volatilities across
for various countries. Absolute various swaption maturities.
changes in inflation, cross-currency
versus the U.S. dollar basis, and EUR
tenor basis risk.
Public equity  Arithmetic returns to public equity Changes in implied 1 month
across regions (markets). volatilities of public equity
options across various
maturities.
Public equity  Relative yield shocks on dividend N/A 1 month
dividends derivatives (e.g., dividend swaps and
dividend futures) across various regions
(markets) and tenors.
Sovereign Changes to five-year credit default swap ~ N/A 1 month
credit spreads for various countries.
Corporate Spread changes to corporate bonds, N/A 3 months
credit covered bonds, indices, index tranches,
and index options across credit ratings.
Municipal Spread changes to municipal bond N/A 3 months
credit indices and other municipal credit
products across credit ratings.
Other fair Arithmetic returns to other securities N/A 3 months

value assets

held under fair value accounting rules.
Examples include illiquid fair value
securities, which cannot be grouped into

www.federalreserve.gov



8 Model Documentation: Overview of Scenario Design Process

Option-implied volatility

Horizon
shocks

Asset class Spot/futures curve shocks

another asset class, such as public

welfare investments covering housing

credit, tax credit, and energy

investments.
Securitized Market value haircuts (price declines), N/A 3 months
products expressed in percentage terms, to value-

weighted portfolios of mortgage-backed

securities and other asset-backed

securities (ABS).

i.  Risk Factor Liquidity Horizons

Financial risk factor shocks are calibrated based on assumed time horizons that reflect
several scenario design considerations. One consideration is the liquidity characteristics of the
different asset classes (as listed in Table B1) that constitute risk factors. More specifically, the
calibration horizons reflect the variation in speed at which banks could reasonably close out, or
effectively hedge, the associated risk exposures in the event of market stress. The horizons are
generally longer than the typical times needed to liquidate exposures under normal conditions
because they are designed to capture the unpredictable liquidity conditions that prevail in times
of stress.’ Another consideration is maintaining consistency between the assumed time horizons
used to calibrate risk factor shocks and the timeline for attributing the losses stemming from
these risk factors. Specifically, losses associated with the global market shock component are
attributed to one quarter of the stress test horizon, which implies an upper bound of three months

for calibrating the shocks.

® The liquidity of previously well-functioning financial markets can undergo abrupt changes in times of financial
stress. For example, prior to the Global Financial Crisis, AAA-rated private-label residential mortgage backed
securities (RMBS) would likely have been considered highly liquid, but their liquidity deteriorated drastically during
the crisis period.

www.federalreserve.gov



9 Model Documentation: Overview of Scenario Design Process

Given these considerations, the shock liquidity horizons are chosen to be broadly
consistent with the proposed standards in the Fundamental Review of the Trading Book (FRTB).”
The horizons in the FRTB are specified based on recommendations from consultations with the
financial industry and its regulators. Therefore, they are considered a reasonable benchmark for
defining the shock horizons used in the global market shock.

The liquidity horizons used in the market shock scenarios are not perfectly matched with
the FRTB liquidity horizons due to granularity differences between the FRTB standards and the
global market shock template. The FRTB specifies horizons at a more granular level, often using
different horizons within each asset class. For example, the FRTB specifies sovereign risk factor
horizons by credit rating. In contrast, the global market shock template specifies sovereign
shocks by country to capture country-specific risks not reflected by credit ratings. Moreover, the
Board uses the same liquidity horizon for all risk factors within each asset class, whereas the
FRTB allows for different horizons within asset classes. Given these differences, the global
market shock scenario aims at aligning with the horizons specified by the FRTB by using a
weighted average of the FRTB horizons within each asset class. The weights are determined
using aggregate firm exposures.® For example, FRTB horizons for equity risk factors vary
between ten and 60 business days, and the global market shock horizon for this asset class is
assumed to be four weeks. Since the Board imposes an upper bound on global market shock
horizons of one quarter, there are cases where the range of FRTB horizons is longer than the

global market shock horizon. For example, FRTB horizons for corporate credit risk factors vary

7 The FRTB standards are published as part of the “Minimum capital requirements for market risk”” published by the
Bank of International Settlements (2019).

8 Exposures are taken from FR Y-14Q, schedule F.
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10 Model Documentation: Overview of Scenario Design Process

between 60 and 120 business days, but the Board uses a horizon of three months for corporate
credit.

il. Scenario Design Process

The process for designing the global market shock consists of three stages: 1) the
development of scenario narratives, 2) scenario generation, and 3) scenario selection. Three
different parties with relevant decision authority vet this process before scenarios are finalized.
The parties involved are market risk functional leads, an oversight committee of stress testing
program leaders, and division directors for Supervision & Regulation and Financial Stability at
the Board.

In the first stage, scenario narratives, which are thematic summaries of potential episodes
of market distress that are summarized by a few risk factors, are developed for further
consideration. These risk factors, denoted as primary risk factors, broadly characterize market
conditions under a chosen narrative. After scenario narratives and their primary risk factors are
developed, they are first reviewed by market risk functional leads. After this review is
completed, narratives and primary risk factors are presented to the oversight committee, which
decides on the candidate scenario choices of each stress testing cycle.

The second stage uses data-driven models to generate the full set of published global
market shocks conditional on the primary risk factor shocks for each narrative. The models are
based on the historical co-movements between risk factors under stressed market conditions.
The output is a set of candidate scenarios, each consisting of a narrative and a complete set of
risk factor shocks that make up the global market shock. This step emphasizes the process of

expanding the primary risk factor shocks out to the full set of shocks. As in the first stage of the

www.federalreserve.gov



11 Model Documentation: Overview of Scenario Design Process

scenario design process, the oversight committee reviews and signs off on candidate scenario
choices before they are presented to division directors for further evaluation.

In the third stage, a few scenarios are selected from among all the candidate scenarios for
final global market shock scenario consideration by the Board. After reviewing all presentations
and perspectives of stress test program leadership, the Director of Supervision & Regulation and
the Director of Financial Stability decide on the final global market shock with the concurrence
of the Chair of the Committee on Bank Supervision. The following three subsections (B.ii.1-
B.ii.3) describe these stages in further detail.

1. Scenario Narratives

The first stage of global market shock scenario design consists of drafting several
narratives of potential episodes of market distress. The Board creates multiple scenario
narratives at this stage to encompass different types of market stresses. A scenario narrative
consists of a qualitative description along with shock values for a few key risk factors that
characterize different financial market conditions. These risk factors, denoted primary risk
factors, represent the following five financial markets: equities, credit, interest rates, commodity,
and foreign exchange rates. The selected primary risk factors are the S&P 500 equity market
index, Moody’s Baa-Aaa credit spread, the level and slope of U.S. Treasury interest rates, energy
and metal commodity indices, and the U.S. dollar-to-Euro exchange rate. This set of primary
risk factors can be augmented with additional risk factors if a particular scenario narrative
requires additional risk aspects to provide a full characterization. For instance, a scenario
narrative focusing on financial and economic conditions in Europe may require more Europe-

specific risk factors, such as European stock market indices.

www.federalreserve.gov



12 Model Documentation: Overview of Scenario Design Process

The Board considers multiple sources of information for specifying scenario narratives,
including supervisory experience and forward-looking expert judgment, as well as statistical
analysis of historical and recent financial data. Incorporating expert judgment in scenario design
is a widely accepted practice by industry practitioners and in academic and regulatory literature.
For example, the Committee on the Global Financial System (2005) classifies stress scenarios
into historical and hypothetical scenarios, where the latter involves considerable judgment.’
Aikman et al. (2024), Breuer et al. (2018), and Alfaro and Drehmann (2009) also emphasize the
role of expert insights in scenario design.'°

Expert judgment is based on a screening of emerging risks and current market conditions
identified from various sources including, but not limited to, financial stability reports from
government agencies, supervisory information, and internal and external assessments of potential
sources of distress, such as geopolitical, economic, and financial market events.

The Board uses statistical analysis of historical data to specify primary risk factor shocks.
One analysis uses percentiles of historical data, where the percentiles reflect the severity of stress
for each primary risk factor. For example, the narrative may categorize shocks as “mild,”

9% ¢

“moderate,” “large,” “severe,” or “unprecedented.” In determining a given cycle’s global market
shock component, the Board may consider unprecedented shocks because times of stress can

feature events that have not been observed previously. These qualitative characteristics are

mapped to quantitative shocks as follows:

% See Committee on the Global Financial System (2005): Stress Testing at Major Financial Institutions: Survey
Results and Practice.

10 See Aikman, D., R. Angotti, and K. Budnik (2024): Stress Testing with Multiple Scenarios: A Tale on Tails and
Reverse Test Scenarios, European Central Bank Working Paper, No 2941.; Breuer, T., M. Jandacka , J. Mencia, and
M. Summer (2012): A Systematic Approach to Multi-Period Stress Testing of Portfolio Credit Risk, Journal of
Banking and Finance, 36(2), 332-340.; Alfaro, R., Drehmann, M., 2009. Macro Stress Tests and Crises: What Can
We Learn? In: BIS Quarterly Review. Bank of International Settlements, pp. 29—41.
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13 Model Documentation: Overview of Scenario Design Process

e “Mild” shocks fall within the 15" (including) and 85" (including) percentiles of the
historical realizations of the primary risk factors.

e “Moderate” shocks fall within the 5 (including) and 15" (less than) percentiles or within
the 85" (greater than) and 95" (including) percentiles.

e “Large” shocks fall within the 1* (including) and 5 (less than) percentiles or within the
95t (greater than) and 99'" (including) percentiles.

e “Severe” shocks fall within the historical minimum (including) and the 1% (less than)
percentile or within the 99™ (greater than) percentile and the historical maximum
(including).

e “Unprecedented” shocks are greater in magnitude than the historical maximum or lower
than the historical minimum.

The above mapping is the Board’s general guidance for standardizing the qualitative
severity of the scenario narrative rather than using a statistical model. These percentiles are
applied to historical primary risk factor shock values computed over A-week windows of data,
where A is the time horizon over which the shock is calibrated. The final adjustment may
combine the shock values from these percentiles with adjustments from other considerations,
such as the current levels of risk factors. For example, large negative shocks to interest rates
could be avoided during times when interest rates are near the zero lower bound.

The shock values of primary risk factors may also be chosen to target specific secondary
risk factors that are deemed particularly important for a given scenario narrative. For example,
the shock value for the energy commodity index may be chosen to target a specific shock value

for a shock to the price of West Texas Intermediate crude oil, which is a secondary risk factor.

www.federalreserve.gov



14 Model Documentation: Overview of Scenario Design Process

Another analysis used to help inform the production of narratives considers historical
shocks in combination with past firm risk exposures. For this exercise, the Board generates a
large number of scenarios using historical simulation and estimates the trading gains and losses
associated with them using firm exposures from previous quarterly FR Y-14Q submissions.!!
Using this approach, stressful historical shocks are defined by those scenarios that result in tail
losses. This analysis generates a set of historical stressful episodes from which historically
observed shock values to primary risk factors can be collected. This method is described in
further detail in Section D.

Percentiles of historical data and the historical simulation method offer two alternative
sets of primary risk factors that the Board can choose from to describe the narrative. The Board
reviews both sets collectively and selects the primary risk factors that are most appropriate for
the scenario narrative based on emerging risks and current market conditions. Finally, the Board
checks primary shock calibrations for consistency using historical correlations to ensure that the
final combination of shocks representing the key aspects of a given scenario remains plausible
when considered jointly.

2. Scenario Generation

In the second stage of the scenario design, scenario shocks are quantified for all other risk
factors in the published global market shock scenario, including the secondary risk factors. For
this purpose, as a starting point, the Board uses a modeling approach that produces candidate

shocks for all risk factors conditional on the scenario shocks to the primary risk factors.

' FR Y-14Q reporting forms and instructions are available at the website of the Board:
https://www.federalreserve.gov/apps/reportingforms/Report/Index/FR_Y-14Q.
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15 Model Documentation: Overview of Scenario Design Process

In designing the modeling approach, the Board adhered to two main objectives: (i) shocks
should be internally consistent within each scenario (e.g., a severe shock to a security price
should be accompanied by severe shocks to the implied volatility of options written on that
security); and (i1) models should be flexible so as to incorporate emerging risks and targeted
narratives in the global market shock (e.g., the set of primary risk factors should be flexible to
incorporate narratives centered around risks arising outside the U.S.). To satisfy these objectives,
the modeling approach uses a stepwise approach to modeling shocks similar to Abdymomunov,
Duan, Hansen, and Misirli (2024, Section 3).!? The models are designed to capture historical
relationships between risk factors (primary, secondary, and all other), particularly between
historical severe (tail) shock observations. The modeling approach is described in detail in
Section C.

The Board evaluates the model-produced shocks and, if necessary, applies adjustments
based on the Board’s supervisory experience and expertise. These adjustments incorporate
scenario narrative characteristics as well as emerging and ongoing risks highlighted in Financial
Stability Reports and supervision reports of different agencies. Therefore, the narrative is not
constrained by the limited number of the primary risk factors.

The adjustments to model output are motivated mainly by the following reasons:

e Data issues or internal model limitation: When model outputs are deemed to not
accurately reflect periods of historical stress or would otherwise be unreasonable due to
data issues or model limitations, model overrides are performed to bring them in line with

market movement expectations under stress scenarios.

12 See Abdymomunov, A., Z. Duan, A. L. Hansen, and E. U. Misirli (2024): Designing Market Shock Scenarios,
Federal Reserve Bank of Richmond Working Paper Series, WP 24-17.

www.federalreserve.gov
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Current market environment: Modeled shocks are based on long term historical data and
historical correlations. Sometimes modeled shock outputs may be too extreme or too
mild for current market conditions. For example, rate shocks calibrated to past periods of
stress under a higher interest rate environment may lead to improper outcomes if directly
applied to an extreme low-rate environment. In such cases, necessary adjustments to
shock output are made in light of current market conditions.

Bespoke narratives: Models are calibrated to historic periods of general market stress.
Narratives may focus on differentiated shocks to specific asset classes or regions which
may not be captured exactly or appropriately in such past historical events. In such cases,
shocks are adjusted as needed to reflect the tailored scenario narrative.

Cross-asset class and intra-asset class consistencies: Model output shocks sometimes may
not reflect cross-asset class correlations or may not be internally consistent within the
asset class due to primary-risk-factor shock specifications. As a result, the overrides are
needed to reflect appropriate consistencies.

Consistent with the guidelines on stress testing published by the Bank of International

Settlements (2018), judgment applied by the Board is subjected to rigorous review and validation
aimed at ensuring that the judgments are properly justified.!*> Shocks to key risk factors, which
include primary risk factors and potentially some secondary risk factors that are important for
describing the narrative, are benchmarked to historical shock distributions. If any of the key
shock values are unprecedented (i.e., exceed historical experience), they must be highlighted in

the Board’s internal processes, and their plausibility must be justified by the current environment

and scenario narratives.

13 Bank of International Settlements (2018): Stress Testing Principles.
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17 Model Documentation: Detailed Modeling Approach

All scenarios, including their judgment-based adjustments, are subject to independent
quality assurance review. These reviews aim to ensure that the financial market shocks in the
global market shock scenario are (1) severe, but plausible; (2) correspond to the scenario
narrative; and (3) are internally consistent; that is, shocks to different product types co-move
according to expectations of how the stress scenario would unfold.

3. Scenario Selection

In the third and final stage, the Board evaluates all candidate scenarios and selects one
scenario for the global market shock component for the severely adverse scenario. The scenario
selection process among candidate scenarios follows a governance process where inputs and
feedback from various internal stakeholders are considered. In this process, the Board also
collects feedback on scenario narratives from other federal regulatory agencies, such as the
Office of the Comptroller of the Currency (OCC) and the Federal Deposit Insurance Corporation
(FDIC). Ultimately, authority for the ultimate decision on scenario selection has been delegated
jointly to the Directors of the Division of Supervision and Regulation and the Division of
Financial Stability, with the concurrence of the Chair of the Committee on Bank Supervision.'*
C. Detailed Modeling Approach

Generating financial market shock scenarios is a high-dimensional problem because there
are thousands of potential risk factor shocks whose historical data are interrelated. Moreover, a
scenario should endeavor to be internally consistent; that is, the directions and magnitudes of
specific shocks must correspond to those of other shocks within their asset class and across other
asset classes, as based on experience during financial turmoil. The shocks should also conform

with the overall scenario narrative as a whole.

1412 CFR 265.7(c)(11).
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18 Model Documentation: Detailed Modeling Approach

These features present challenges for the scenario design models. First, it is impractical
to map scenario narratives directly to a large number of risk factors in one step. Second, it is
challenging to ensure the consistency and joint plausibility of different shocks (i.e., the
reasonableness of the cooccurrence of thousands of market risk factor shocks across a diverse set
of asset classes). Both the modeling and the quality assurance review process of model
outcomes increase in complexity as the number of risk factors increases.

To address these challenges, the Board adopts the following approach. First, the set of all
risk factors is divided into three categories: (1) the primary risk factors, which characterize the
scenario narratives at a very high level; (2) a subset of risk factors that specify the scenario
narrative at a more granular level and, to the extent possible, can be described by the variation in
the primary risk factors, called secondary risk factors; and (3) a large number of any remaining
risk factors needed to complete the entire market shock scenario. Note that the set of remaining
risk factors includes those that are in the global market shock template but not included in the
sets of primary and secondary risk factors. The introduction of the secondary risk factors allows
the Board to specify more detailed scenario characteristics than with the primary risk factors
alone, while still maintaining a manageable number of risk factors. This approach gives the
Board flexibility to design scenarios that target special vulnerabilities in key secondary risk
factors while maintaining the model-driven consistency among all risk factors. While the Board
seeks to choose secondary risk factors that can be modeled using the primary risk factors, there
are cases where risk factors that are unrelated to the primary risk factors are necessary to
describe the details of the scenario narrative. In those cases, the Board uses simpler methods

such as mappings, multipliers, and percentile methods, as described further in Section C.iii.1.d.
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19 Model Documentation: Detailed Modeling Approach

As in Abdymomunov, Duan, Hansen, and Misirli (2024), the modeling approach links
these three sets of risk factors in two steps.!> In the first step, the secondary risk factors are
modeled conditional on primary risk factors. These models generate shock values to secondary
risk factors given the primary risk factor shocks determined from the scenario narratives. In the
second step, any remaining risk factors needed are modeled conditional on the primary and
secondary risk factors.

i.  Choice of Primary and Secondary Risk Factors

As noted above, the risk factors of a financial market scenario are grouped into three
categories: (1) primary risk factors that characterize broad market conditions, (2) secondary risk
factors that describe a scenario narrative, and (3) the remaining risk factors that give a
comprehensive description of a market scenario. The modeling approach proceeds stepwise to
link these three sets of risk factors to one another. This section discusses the choice of primary
and secondary risk factors.

1. Description and Rationale

The Board chooses the primary risk factors in accordance with three properties.
First, primary risk factors should characterize a large part of the variation in asset prices across
five broad asset classes; namely, public equities, traded credit, interest rates, exchange rates, and
commodities. This property helps the Board to form economically and statistically significant
relationships between the primary risk factors and other risk factors in their respective asset

classes.

15 See Abdymomunov, A., Z. Duan, A. L. Hansen, and E. U. Misirli (2024): Designing Market Shock Scenarios,
Federal Reserve Bank of Richmond Working Paper Series, WP 24-17.
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20 Model Documentation: Detailed Modeling Approach

Second, primary risk factors should have available long time series of observations that
cover major historical economic and financial crises, thereby capturing tail events that can be
used for scenario analysis, such as with historical simulation. This property helps the Board to
select and justify the magnitudes of risk factors from historical experience and to offer scenario
options that differ in shock severity.

Third, primary risk factors should be observed variables with clear economic
interpretation, which market participants would know and easily associate with a scenario
narrative, as opposed to latent factors described indirectly by statistical methods from observed
variables (e.g., principal component analysis). This property helps the Board to focus on the
consistency of a small set of primary risk factors, to ensure the coherence of the scenario
narrative and to communicate it to market participants.

Review of the available literature suggests that U.S. public equity returns, some measure
of prevailing credit spreads, and a government bond term spread are among the key factors in
explaining business cycle variation. For example, Diebold and Yilmaz (2009) show that U.S.
public stock market returns spill over to global stock markets; Beaudry and Portier (2006) show
that public stock price movements along with total factor productivity shocks jointly explain
business cycle fluctuations; Jermann and Quadrini (2012) emphasize credit conditions as
important contributors to economic downturns; and Estrella and Hardouvelis (1991) show that
the term spread has predictive power for future real activity.!® The literature also suggests that

interest rate risk along the yield curve cannot be fully captured by a single factor; see, e.g.,

16 See Diebold, F. X., and K. Yilmaz (2009): Measuring Financial Asset Return and Volatility Spillovers, With
Application to Global Equity Markets, Economic Journal, 119, 158—171.; Beaudry, P., and F. Portier (2006): Stock
Prices, News, and Economic Fluctuations, American Economic Review, 96(4), 1293-1307.; Jermann, U., and V.
Quadrini (2012): Macroeconomic Effects of Financial Shocks, American Economic Review, 1, 238-271.; Estrella,
A., and G. Hardouvelis (1991): The Term Structure as a Predictor of Real Economic Activity, Journal of Finance,
46(2), 555-576.
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Litterman and Scheinkman (1991).!7 Given these observations, the scenario design framework
employs the S&P 500 index return, Moody’s Baa-Aaa credit spread,'® the U.S. 10-year minus
three-month Treasury term spread, and the U.S. 10-year Treasury bond yield as primary factors.
In addition to these business cycle variables, the scenario design framework needs
primary factors specifically related to foreign exchange rates and commodities pricing to capture
stress within these asset classes. The U.S. dollar-to-Euro exchange rate is central to developing
foreign exchange shocks in scenarios based on stress within the U.S. and Europe. Given the
strong interactions between U.S. and European financial markets, the Board determines that this
exchange is particularly important to define for many scenario narratives. Therefore, the U.S.
dollar-to-Euro exchange rate is included in the list of primary factors to represent the foreign
exchange market. Commodity markets cover both energy and metal products. To describe the
risks associated with these products, three risk factors are included in the set of primary risk
factors: energy, gold, and “other metals”. Gold is included separately from other metals due to
its flight-to-quality property'® during times of turmoil. Since the energy and metal primary
factors are only weakly related, a primary factor for each group is needed. Specifically, the
framework includes the Global Price Index of Energy and the Global Price Index of Metal,
constructed by the International Monetary Fund. These variables are chosen because they

describe common variation within energy- and metal-related primary factors.*

17 See Litterman, R., and J. Scheinkman (1991): Common Factors Affecting Bond Returns, Journal of Fixed Income,
1, 54-61.

'8 The Baa-Aaa spread is the difference between Moody’s Baa-rated and Aaa-rated corporate bond yields.

1% Flight-to-quality refers to a sudden shift in investment behavior during financial turmoil in which investors sell
their risky assets such as stocks and purchase safe assets such as gold instead. This behavior is largely driven by
investors’ fear in the market, which makes them seek less risk in exchange for lower profits.

20 The energy index is a price index of fuel-based commodities including crude oil (petroleum), coal, natural gas and
propane. The metal index is a price index of base metals including aluminum, copper, iron ore, lead, molybdenum,
nickel, tin, uranium and zinc. Index values represent the benchmark prices which are representative of the global
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Although the eight primary factors are chosen in accordance with the three properties
listed above, it remains unlikely that all scenario narratives can be properly described using this
small subset of risk factors. Therefore, the secondary risk factors are introduced to provide a
more detailed scenario narrative. Similar to Abdymomunov, Duan, Hansen, and Misirli (2024),
the Board selects secondary risk factors from five broad asset classes. The secondary risk factors
are chosen based on two principles.?! First, the set of secondary risk factors must be able to
broadly characterize scenario narratives. Second, the secondary risk factors must be statistically
related to the primary risk factors, such that statistical models can be used to generate shock
values for secondary risk factors conditional on primary risk factor shocks. It may be necessary
to include secondary risk factors that do not satisfy this criterion to represent a detailed scenario
narrative with the set of secondary risk factors. Using these principles, the set of selected
secondary risk factors includes around 100 factors. Examples of chosen secondary risk factors,
including their linkages to primary risk factors, are provided in Section C.ii. Unlike the primary
risk factors outlined above, the set of secondary risk factors is not necessarily the same each year.
Instead, the set of secondary risk factors is flexible and can be expanded to accommodate various
market scenarios, as appropriate. For example, a scenario narrative specifically based on
financial turmoil in, say, Asia, may require additional Asian equity market indices, interest rates,
and foreign exchange rates in the set of secondary risk factors, all of which would not be needed
to describe, for instance, a U.S.-centered scenario. Therefore, the set of secondary risk factors in

Section C.ii represents a baseline that could be subject to adjustments year-over-year.

market. These prices are determined by the largest exporter of a given commodity and given in nominal U.S.
dollars. The time series of the indices are retrieved from the Federal Reserve Bank of St. Louis’ FRED online
database with the following citations: Global Price of Energy Index [PNRGINDEXM] and Global Price of Metal
Index [PMETAINDEXM].

21 See Abdymomunov, A., Z. Duan, A. L. Hansen, and E. U. Misirli (2024): Designing Market Shock Scenarios,
Federal Reserve Bank of Richmond Working Paper Series, WP 24-17.
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2. Assumptions and Limitations

While summarizing scenario narratives by the small subset of primary risk factors is
practical, this approach could overlook certain risks. For example, the Board models equity
market risk based on the S&P 500 index as a primary risk factor, but equity market risk could
arise from, for example, European or Asian markets. Also, even though simple and tractable
models with straightforward interpretations are prioritized, the small number of primary risk
factors may limit broad narratives. The Board attempts to mitigate this possibility by
considering primary and secondary risk factor shocks as part of the detailed narratives.
Moreover, the Board carefully evaluates shock values applied to the larger set of secondary risk
factors that are produced from the primary risk factors and applies adjustments to model
outcomes if necessary to properly describe the risks in the formulated scenario narratives. Such
adjustments may include augmenting the set of primary risk factors with additional risk factors.
Finally, the Board has extensive quality assurance processes in place to ensure coherence among
all final risk factor shocks.

ii.  Modeling the Relationship Between Primary and Secondary Risk Factors

This section explains the first part of the modeling approach, which generates secondary
risk factors from primary risk factors using regression models.

The Board models each secondary risk factor separately, given one or more of the primary
risk factors. Section C.ii.2 provides an overview of these linkages by asset class. With a few
exceptions, the secondary risk factors are linked to primary risk factors from the same asset class;
e.g., public equities secondary risk factors are modeled using the S&P 500 index, which is the only
public equity primary risk factor. In some cases, these simple within-asset-class links are not

sufficient for describing stressed conditions in the secondary risk factors. For example, municipal
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credit secondary risk factors are modeled using the credit primary risk factor (i.e., the Baa-Aaa credit
spread). But in some scenarios, such as during the COVID-19 pandemic, one business cycle factor is
not sufficient to generate severe stress in the shock values to municipal credit factors. Therefore,
municipal credit is described using both the credit spread and the S&P 500 return. Finally, some
secondary risk factors are modeled based on other secondary risk factors, which may describe the
behavior under stressed conditions better than the primary risk factors. For example, the implied
volatility of DAX index options is modeled using the DAX index return, which is also a secondary
risk factor.??

Depending on the nature of the secondary risk factor data, the Board employs one of the
following regression frameworks: quantile regression for secondary risk factor shocks (i.e., the
log-return® of a risk factor or the difference of risk factor levels); quantile autoregression for
secondary risk factor levels (e.g., index prices, interest rates, or exchange rates); ordinary
regression for the secondary risk factor shocks; and ordinary autoregression for spreads between
secondary risk factor levels.

1. Model Descriptions and Rationale

a. Quantile Regression Model
As discussed in Section C.ii.2, most of the secondary risk factors are modeled with quantile
regressions. In market risk, extreme shocks tend to happen simultaneously during financial
crises. This behavior is captured by the quantile regression model because it expresses the
conditional quantiles of secondary risk factors as a function of primary risk factors. Let r;,p

denote a risk factor shock in month ¢, such as an equity index log return, over a horizon of h

22 The DAX index is an index of 40 selected German blue chip stocks traded on the Frankfurt Stock Exchange.

2 The h-period log return of a product i with price Piis defined as r;,, = log P;; —10g P;;_p.
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months. Specifically, let rf ¢ n denote a secondary risk factor shock, and let rf ¢, denote a vector of K;
primary risk factor shocks chosen on a case-by-case basis for each secondary risk factor regression.
The fitted 7’th percentile of the conditional distribution of rf’t‘h given rf ¢n is given by:**
Equation C1 — Quantile Regression Model
Qr(rf,t,h|r€t,h) = ho: + rft,hﬂfﬁ
where a; is the estimated constant, and f is the estimated coefficients on the primary factor
shocks, both given the percentile parameter 7.2° Quantile regression models are defined given a
fixed percentile 7, which must be defined before the model can be estimated. This parameter
controls the location on the conditional distribution of the secondary risk factor data for which the
model is predicting shocks. In other words, 7 determines the extremity of the generated shock
values. The Board chooses T based on the severity of the primary risk factor shock, relative to
historical data. Specifically, let 7‘5 1 denote the primary shock for factor i at a one-month
horizon that is chosen in the stress-scenario,?® and let rf 1 represent the one-month return on this
primary risk factor. To a first approximation, T is chosen as the probability based on historical
experience that the return for factor i is smaller than the primary factor shock:
Equation C2 — Targeted Quantile in Quantile Regression Model
T= Pr(rfl < 1"‘51)
In the expression, Pr denotes the empirical probability based on the history of time-series

data for the return for primary factor i. For example, if in the historical data the return for

24 A conditional distribution of a random variable X given another random variable ¥ describes the distribution of X
given that a particular value of ¥ has been realized.

25 The parameters are estimated using the algorithm in Koenker and D’Orey (1987).

26 Since this is a fixed value, it does not have a subscript ¢.
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primary factor i is less than the primary shock 85 percent (15 percent) of the time, then T would
to a first approximation be 85 percent (15 percent), corresponding to an upper (lower) tail
quantile. Upper or lower tails may correspond to stress depending on the variable being
modeled; that is, lower tail shocks are associated with stress for equities, while upper tails are
associated with stress for volatilities or credit spreads. As the time series data sample is limited
for some secondary risk factors, it is difficult to accurately estimate the quantile regression for
values of 7 close to either zero or one, because there are not sufficient observations to identify
the possible extreme values of the distribution. The Board therefore introduces lower and upper
bounds on 7 given by the 10th and 90th percentiles (i.e., 10% < 7 <90%) and rounds 7 estimates
outside of this range to the closest bound. Imposing these bounds cuts off some possible very
severe scenario choices for secondary factors. However, because the model already conditions
on severe shock values for primary risk factors, the Board is not concerned that this limitation
causes mild scenario shocks for secondary risk factors. Data limitations also restrict how
granular 7 can be selected since the estimated coefficients will be statistically indistinguishable
for small changes in 7. It is therefore sensible to limit the percentile to 7 € {10%, 15%, 20%, . .
., 80%, 85%, 90%}. In sum, the framework uses Equation C2 to quantify 7 and then rounds it
to the nearest five percentage-point interval, truncating it from below at 10 percent and from

above at 90 percent.

b. Quantile Autoregressive Model

Implied volatility risk factors have strong autocorrelation properties in their time series data;
that is, on average, data values observed in a given period are near the values observed in the

previous period. For example, implied volatility levels of equity indices are often autocorrelated
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with a coefficient close to one. Such factors are therefore better characterized by quantile
autoregression models (Koenker and Xiao, 2006) in levels with the underlying spot risk factor shock
treated as an exogenous variable (i.e., a variable for which the variation is driven by factors that are

outside of the model).2?” To state this model mathematically, consider a secondary risk factor that
is an implied volatility of an option written on a security i with some maturity. Let O'f, ¢ denote the
implied volatility at end of month # let abs(r;, ;) denote the absolute value of the one-month
log return of security i;*® and let Q:(07403,_1,T; ;1) denote the 7’th percentile of the distribution
of ait given r; ;4 and aft_l. The fitted value of the 7’th quantile of a‘zt in the quantile
autoregression is given by:
Equation C3 — Quantile Autoregressive Model

0:(03|67,_1,Tit1) = ac + abs(11) fr + 07 ;_1pr.

Shock values to af, ¢ are computed using the estimated coefficients from Equation C3 as
follows. Let a{ o be equal to the implied volatility at the date at which the estimation sample ends.
Starting from # =1, compute recursively the risk factor level after 4 months, where 4 is the shock
calibration horizon of the considered factor, using Equation C3 with 7;,;.The risk factor
shock 1s given as 0'“2 W 0';-9_ o- To ensure high volatility levels in the stressed scenarios, the model

in Equation C3 is implemented with the 90™ percentile (i.e., T = 90%).%

27 See Koenker, R., and Z. Xiao (2006): Quantile Autoregression, Journal of the American Statistical Association,
101(475), 980-990.

28 The absolute value is used to model the idea that volatility increases with large return shocks in either direction.

2 For example, consider a volatility risk factor with 0{0 = 500 volatility points. A one-month shock given parameters
99 = 100, Byg9 = 0.05, and pg g = 0.90, and a corresponding return shock equal to r;,; = —100 is
computed as 03 ,— 659 = 100 + 0.05 - 100 + 0.9 - 500 — 500 = 55 volatility points.
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c. Ordinary Regressions

The stress scenario shock for some secondary risk factors is set equal to its expected
value conditional on the primary risk factor shock(s) in the scenario, denoted £ (r“z ¢ h|r€ th)-
These models are preferred in cases in which tail realizations of the secondary and primary risk
factors do not tend to coincide simultaneously. The relationship between the secondary factor
and the primary factor shocks is given by:

Equation C4 — Ordinary Regression Model
E (rit,h|r€t,h) = ha +1{,.p,

where the parameters in the equation are estimated by ordinary least squares linear regression. a
is the estimated constant, and /8 is the estimated coefficient on the primary factor shock.*°

For public equity index returns, the Board follows Ang et al. (2006) and adds an
asymmetric component to the model to capture the idea that stock returns are more sensitive to
downside risk than upside risk and, as a result, bear a downside risk premium.>! The downside
risk regression takes the form:

Equation C5 — Downside Risk Regression Model
S 1P = P P
E@ieplrien) = ha + 1 pff + 1rft‘h<0ri,t,hyy
where 1rpth <o 18 a function that takes value one if 5 » < 0 and zero otherwise. Finally, the
Lt by

ordinary regression counterpart to the autoregressive model in Equation C3 is given as:

Equation C6 — Ordinary Autoregressive Model

30 The “ordinary least squares” method estimates parameter values (e, 8) such that the sum of squared residuals,
defined by ¥1_1 (73, — ha — r{,,B)" given the model in Equation C4, is minimized given data on 1§, , and rf, ;, for
t=12,...,T.

31 See Ang, A., Chen, J., and Xing, X (2006) Downside risk. Review of Financial Studies, 19(4):1191-1239.
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E (st,t|p1$,t—1’ Tfh) =at rﬁt,hﬂ + pf,t—ll’-
In this framework, secondary risk factor shocks can be generated following the same
procedure as described for Equation C3.
The full overview of regression links between secondary and primary risk factors by asset
class is given below.

2. Model Applications

Shocks to secondary risk factors are computed using the models described above in
Section C.ii.1, given the primary risk factor shocks as inputs. For each asset class, Table C1
shows how secondary risk factors are linked to the primary risk factors and which regression
model is primarily used to generate shock values for that secondary risk factor asset class.

Table C1 — Overview of primary modeling choices for secondary risk factors by asset class

?:cct(:)l:'(ltlsz trgzll(ss Primary: r{ Spot model Implied volatility model
Agencies Baa-Aaa credit spread ~ Quantile regression, N/A
Equation C1.

Commodities:

Metals Global Price Index of  Quantile regression, Quantile autoregression,
Metal Equation C1. Equation C3.

Energy Global Price Index of  Quantile regression, Quantile autoregression,
Energy Equation C1. Equation C3.

Foreign exchange U.S. dollar-to-Euro Quantile regression, Quantile autoregression,
exchange rate Equation C1. Equation C3.

Interest rates:

10-year U.S. 10-year Treasury  Quantile regression, Quantile autoregression,

government bond  bond yield Equation C1. Equation C3.

3-month U.S. 10-year-minus-3-  Ordinary autoregression,  Quantile autoregression,

government bond month Treasury term Equation C6. Equation C3.
spread

10-year swap 10-year government Quantile regression, Quantile autoregression,
bond yield Equation C1. Equation C3.

3-month swap 10-year-minus-3-month  Ordinary autoregression,  Quantile autoregression,
government bond term  Equation C6. Equation C3.

spread
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Public equity S&P 500 index Downside risk Quantile autoregression,
regression, Equation C5.  Equation C3.
Sovereign credit ~ Baa-Aaa credit spread ~ Quantile regression, N/A
Equation C1.
Corporate credit ~ Baa-Aaa credit spread  Quantile regression, N/A
Equation C1.
Municipal credit ~ Baa-Aaa credit spread  Quantile regression, N/A
Equation C1.
Securitized Baa-Aaa credit spread ~ Quantile regression, N/A
products Equation C1.

3. Assumptions and Limitations

The quantile regression model in Equation C1 uses percentile parameters 7 derived from
the severity of the primary risk factor shocks. For example, if the S&P 500 index return is in the
10" percentile of the historical return distribution, the public equity index returns for secondary
risk factor markets will be estimated as the model-implied 10" percentile conditional on the S&P
500 index return taking values in the 10™ percentile. This assumption is justified if the
secondary and associated primary risk factors realize severe shock values in the same periods.
The Board has confirmed that this condition is satisfied in the data across many of the sets of
primary and secondary risk factors.

All models are univariate; that is, they describe the dynamics of secondary risk factor
shocks independently from other secondary risk factor shocks. This approach yields simple
models with easy implementation but may abstract from important correlations across risk factor
shocks. The Board has implemented multivariate models as alternative modeling approaches;
see Section C.iv. The results from this exercise indicate that results do not change considerably

when using multivariate models in place of univariate ones.
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The list of potential models for linking primary to secondary risk factor shocks does not
include a model specification for describing term structures of shock values. The set of
secondary risk factors typically includes short-term and long-term government bond yields as
well as swap rates. The Board ensures proper relationships between these rates of different
maturities by first modeling the long-term rate and then modeling the spread between long- and
short-term rates.

The use of quantile regression models requires an assumption on the targeted percentile
parameter, T. The Board chooses this parameter based on the severity of the primary risk factor
shocks relative to historical data. However, short time-series data puts limitations on the upper and
lower bounds of T, which may cut off some very severe scenario choices for secondary risk factors.
Moreover, data limitations restrict how granularly T can be chosen.

1ii.  Modeling the Relationship Between Secondary and All Remaining Risk Factors

This section explains the second part of the modeling approach which describes the link
between, on the one hand, the set of primary and secondary risk factors and, on the other hand,
the remaining set of risk factors in the global market shock template. This step involves the
modeling of shocks to a large number of risk factors with widely different characteristics.
Multiple modeling choices are, therefore, necessary to generate the remaining risk factor shocks.

The Board employs copula models, regression models, the Nelson-Siegel model, a suite
of volatility models based on the Nelson-Siegel model,*? and a set of simpler rules—such as
mappings, multipliers, and averaging—as described below in Section C.iii.1. Copula models

characterize the co-movement of a large set of risk factors by modeling their dependence

32 The idea of applying the Nelson-Siegel model in the context of implied volatility term structures is developed in
Guo, B., Han, Q., and Zhao, B. (2014): The Nelson—Siegel Model of the Term Structure of Option Implied Volatility
and Volatility Components, Journal of Futures Markets, 34(8), 788-806.
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structure separately from their time-series dynamics. These models are used as widely as
possible when modeling the marginal distributions of different risk factors in their respective
asset classes. However, in some applications, the joint modeling of a large set of risk factors
may not be practical or beneficial. For example, securitized products backed by different types
of loans are modeled separately. In some cases where copula models are not employed, ordinary
regressions are applied. In other cases, such as capturing the structural relationship between
implied volatility surfaces and factors that have a term structure, modeling using a copula is
complex, which is inconsistent with the stress testing principle of simplicity. In these cases,
Nelson-Sigel models are used to approximately capture term structure relationships. These
models have parametric functional forms that describe term structures with just a few calibrated
parameters and latent factors (for example, level, slope, and curvature factors). Finally, for risk
factors where data is limited or risk factors that are immaterial, the Board uses simpler methods,
such as multipliers and mappings.

1. Model Descriptions and Rationale

This section describes the models used to estimate the relationship between primary and
secondary risk factors and all remaining risk factors. Ordinary regressions are described in

Section C.ii.1.c.

a. Copula Model
Copula modeling is a statistical tool to generate multivariate distributions and to

investigate the dependence structure between random variables. Specifically, a copula is a
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function that links univariate marginal distributions of random variables to their joint,
multivariate distribution.*® For a primer on copula modeling, see Fan and Patton (2014).3*
Copula modeling offers several advantages over the quantile regression framework used
for modeling secondary risk factors, which are particularly important for the purpose of mapping
sets of secondary risk factor shocks into even larger sets of remaining risk factor shocks.*® First,
it does not require that all marginal distributions be the same. This feature is beneficial, for
example, because it allows for different Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) specifications*® across different risk factors based on the empirical
data—where one risk factor might be best modeled with a GARCH(1,1) specification, another
might require an exponential GARCH (EGARCH) model as defined by Nelson (1991) or even a
different type of model altogether.>” In contrast, traditional multivariate models often assume
that all variables follow the same type of distribution. Second, copula models allow the
separation of the modeling of risk factors’ co-dependency structure, describing how different risk
factors co-move at a given point in time, from the modeling of risk factors’ marginal
distributions. The time-series dynamics of each risk factor and the co-movement of all risk

factors at a given point in time can therefore be modeled in two separate steps, using separate

types of models. This feature offers additional flexibility in terms of choosing any joint model

33 A multivariate distribution is a probability function describing the joint behavior of two or more random variables
simultaneously. A univariate marginal distribution refers to the probability distribution of a single variable in a
multivariate probability distribution, while disregarding the other variables.

34 See Fan, Y., and A. J. Patton. (2014): Copulas in Econometrics, Annual Review of Economics, 6: 179-200.

35 In contrast, the benefits of the copula model are less important for mapping one or a few primary risk factor
shocks into a small set of secondary risk factor shocks, because it is a problem with much fewer variables.

36 GARCH specifications refer to models of conditional volatility where the conditional volatility in period ¢
depends on the conditional volatility in period (¢-/) and the innovation of the time series model in period (¢-7). A
GARCH(1,1) model is defined below in Equation C9.

37 See Nelson, D. B. (1991): Conditional Heteroskedasticity in Asset Returns: A New Approach, Econometrica,
59(2), 347-370.
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that most closely resembles the tail-dependencies in the data, regardless of the choice of the
marginal distributions. These advantages are important for modeling the relationship that the
primary and secondary risk factors have with the remaining risk factors.>® Copula models are
also used by the European Central Bank to simulate adverse financial shocks for their stress test
design (Rancoita and Ferreiro, 2019).%°

The Board uses t-copulas, as defined below, to model risk-factor dependence because t-
copulas better capture the clustering of extreme tail scenarios than copula models based on the
multivariate Gaussian distribution.

To obtain the marginal distributions for each individual risk factor, the Board uses
GARCH models. The GARCH framework is a widely used technique to account for conditional
heteroskedasticity—i.e., time-varying conditional volatility, which is often exhibited in financial

time series data (Bollerslev, 1986).%

Using GARCH models is common practice in financial
applications of the copula approach. For example, Patton (2006) uses a GARCH-t (1,1)
specification when modeling the marginal distribution of the exchange rates.*! Similarly,

Bartram et al. (2007) suggest a GIR-GARCH-t(1,1) specification, as defined by Glosten et al.

(1993), for European stock market returns.** The Board also follows this common practice and

38 In contrast to the first modeling step, which involves modeling the relationship between primary and secondary
risk factors in a low-dimensional setting, modeling the relationship between the remaining factors with the primary
and secondary factors is a high-dimensional problem involving many risk factors.

3 See Rancoita, E., and J. O. Ferreiro (2019): Technical note on the Financial Shock Simulator (FSS). European
Systemic Risk Board.

https://www.esrb.europa.eu/mppa/stress/shared/pdf/esrb.stress_test190402 technical note EIOPA insurance~dcd7f
1ed08.en.pdf.

40 See Bollerslev, T. (1986): Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics,
31(3), 307-327.

41 See Patton, A.J. (2006): Modelling Asymmetric Exchange Rate Dependence, International Economic Review,
47(2), 527-556.

42 See Bartram, S.M., Taylor S.J., and Y.-H. Wang (2007): The Euro and European Financial Market Dependence,
Journal of Banking and Finance 31(5), 1461-1481.; Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993): On the
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uses GARCH-t conditional volatility specifications as widely as possible when modeling the
marginal distributions of different risk factors in their respective asset classes.
The following describes the copula framework mathematically. Let the modeled risk
factor series r;, have the following specification:
Equation C7 — Copula Marginal Distribution Model
Tit = Wi + PiTi-1+ Eig,
where €;; = 0;,2;,. The innovation z, is distributed according to a student’s t-distribution with
v; degrees of freedom, standardized such that the distribution has mean zero and variance one—
i.e., z;;~t(0,1,v;). The conditional variance o%t is assumed to be measurable at time (z-/) and
is described by one of the following models:
Equation C8 — Constant Variance Model
o}, = o},
Equation C9 — GARCH-t Model
Or = @ + 91071 +Pigly_q.
Equation C10 - EGARCH-t Model
log aiz,t = w; + ¢;log 0%t—1 +0iz;; 1+ ll'i(lzi,t—1| - Elzi,t—ll)-
The parameters of these models are estimated for each risk factor using maximum

likelihood methods.

Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks, The Journal of
Finance: 48(5), 1779—1801.Guo, B., Han, Q., and Zhao, B. (2014): The Nelson—Siegel Model of the Term Structure
of Option Implied Volatility and Volatility Components, Journal of Futures Markets, 34(8), 788-806.
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The dependence among N risk factors within a given asset class is modeled by assuming
that their innovations z; are linked through a t-copula. More specifically, for each z;s, the
framework defines a uniformly distributed random variable:

Equation C11 — Copula Uniform Variable Model

Vi

U = Fvl-( _Zi,t)a

vi—2

where from Equation C7, it follows that z;, = r”_”’;# In this representation, the joint
it

cumulative distribution function of u; is given by the copula
Equation C12 — Copula Model
C(ug, uy, -, uy,v,2) = Fy, 5y (Fy (uy), Fy (uy), -+, Fy 1 (uy)),
where F, is a univariate cumulative t-distribution with degree of freedom v, and Fy ,, 5 is an N-
dimensional multivariate cumulative t- distribution with degree of freedom v and correlation
matrix X (see Fan and Patton (2014) for a detailed representation of the t-copulas).*’

One of the benefits of working with a multivariate t-distribution is that its conditional
distributional properties are well established. For example, partitioning a multivariate t-
distribution X into two parts X4 and X,, Ding (2016) shows that the conditional distribution of
X, given X; is also a multivariate t-distribution.** This property is useful for scenario design,
because it allows the framework to describe the distribution of remaining risk factors in an asset
class (e.g., public equity market returns) conditional on its secondary risk factors using a

multivariate t-distribution.

43 See Fan, Y., and A. J. Patton. (2014): Copulas in Econometrics, Annual Review of Economics, 6: 179-200.

4 See Ding, P. (2016): On the Conditional Distribution of the Multivariate t Distribution, The American Statistician,
70 (3): 293-295.
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Specifically, of the N risk factor shocks modeled by t-copula, assume that Ng shocks are
labeled as secondary risk factor shocks, and Ny shocks are labeled as remaining risk factors
shocks—i.e., Ng + Ngp = N. Following the research of Ding (2016), the distribution of
X = F, (uf) = (Fy*(uf ), Fy'(u3 ), -+, Fyt (uf o)) conditional on X7 = Fy1(uf) =
(FyY(ui,) Fyt(u3,), ..., Fy 1 (uy, ) can be expressed as an Ng-dimensional multivariate t-
distribution with v + N degrees of freedom:

Equation C13 — Distribution of Conditional Multivariate Student’s t Distribution

v+dg
v+NS

XF|XE~ty, (”R|S: ZpRisV+ NS)-
where pgs is the conditional mean and Zg g|s is the conditional correlation matrix.*> The

computation of g5, ds and Zpg |5 are explained in detail in Ding (2016) and requires the vector

of X; = F;1(u$) and the correlation matrix X as inputs. To construct u$, the framework
assumes that the A-week-horizon secondary risk factor shocks are evenly distributed across the A

weeks.*® To construct Z, the Board calculates the elements Z; j (i.e., the correlation between the
i™ and j" risk factor shocks) using Kendall’s tau formula with rank correlation ; i
Equation C14 — Kendall’s Tau Formula
. 3
L;j = sin (ET"J)'
Kendall’s tau formula is chosen because it is non-parametric and therefore does not

assume linear or other pre-determined relationships between risk factors.*’ It is also often less

45 See Ding (2016)

46 For example, a one-month shock value of an equity market drop of 12 percent is decomposed into a path in which
the market drops 3 percent per week for 4 weeks.

47 This method for estimating t-copula models was suggested by Zeevi, A. and Mashal, R. (2002): Beyond
Correlation: Extreme Co-Movements Between Financial Assets. SSRN Working Paper. See also Demarta, S. and
McNeil, A. J. (2005): The t Copula and Related Copulas. International Statistical Review, 73(1), 111-129.
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sensitive to outliers than other non-parametric methods, such as Spearman’s rho (Kendall,
1970).*8 To calculate the degree-of-freedom parameter v, the Board takes a conservative
approach and sets it equal to the empirical tenth percentile of the estimated degree-of-freedom
parameters from fitting bivariate t-copulas to each pair of factors whose dependency is modeled
using the copula approach.*’ Setting the degrees of freedom in the copula to the tenth percentile
among the bivariate copulas (instead of a more central value) ensures the copula builds in
extreme tail dependence—i.e., the idea that extreme events are more likely to occur than would
be expected under a Gaussian distribution. Failure to properly account for extreme dependence
may result in inadequate stress in the expanded scenario shocks.

The Board uses the multivariate conditional distribution of X®| X3 to simulate the weekly
path of the conditional mean uf|u$. These uniform variables are then transformed into
standardized innovations z; using the t-distribution (Equation C11), which are then fed into the
marginal model (Equation C7) to determine the weekly path of risk factor shocks r;,. Summing
these shocks over the assumed liquidity horizon yields the cumulative shocks of the modeled risk
factors. The framework repeats the procedure up to 10,000 times and calculates the mean

cumulative shocks of these modeled risk factors as their scenario shock values.’® For asset

48 As noted by Demarta and McNeil (2005), this method does not guarantee that X is positive definite. In practice,
the Board does not encounter issues with non-positive definite correlation matrices. See also Kendall, Maurice G.
Rank Correlation Methods Griffin, 1970.

4 For example, if the dependencies among 20 factors are modeled together in a single copula, then there are 20 -
19/2 = 190 bivariate pairs of factors. A bivariate t-copula is fit to each pair, generating 190 bivariate degrees of
freedom parameters. The 19" smallest degrees of freedom parameter is the tenth percentile among the estimates.
This is then used as the degrees of freedom for the copula that models the dependence among the 20 factors.

30 The number of simulations is chosen as the smallest number (rounded to 1000, 5000, and 10,000, for example)
such that randomization risk does not impact results considerably; that is, results should be roughly the same for
every simulation without fixing the randomness or the seed.
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classes in which shocks are defined as log returns (e.g., public equity), the last step involves the

conversion of log returns into arithmetic returns for reporting purposes.

b. Nelson-Siegel Model

The Board uses the Nelson-Siegel functional form to generate term structures of risk
factors shocks, including yield curves, futures curves, and implied volatility curves. Several
academic studies highlight the model’s success in describing such curves; see, e.g., Diebold and
Li (2006) for yield curves and Guo, Han, and Zhao (2014) for implied volatility curves.’! Term
structures of risk factor shocks involve two dimensions: calendar time # and time of maturity T
(or, equivalently, a tenor given by 7-f), which describes the maturity of a bond (for yield curves),
a futures contract (for futures curves), or an option (for implied volatility curves).

The Nelson-Siegel model for a risk factor level at time # with maturity at time T, p; ¢(T),
is given by:

Equation C15 — Nelson-Siegel Model

_ 1—e_)‘i(T_t) l—e_}'l'(T_t) —li(T—t)
Pie(T) =L + (m) Si: + (W —-e ) Ci:.

This formulation is a three-factor model, defined as level (L; ), slope (S;), and curvature
(Cip). The factor loadings are determined by a single parameter 4;, which controls the rate of
decay of the term structure (i.e., how quickly interest rates decline as the maturity of debt
instruments increases). Smaller values of 4; generate a slower decaying curve.

The decay parameter 4; is estimated by fitting the Nelson-Siegel functional form to the

historical term structure data, e.g., yield curves and at-the-money implied volatility curves,

31'See Diebold, F. X., and C. Li (2006): Forecasting the Term Structure of Government Bond Yields, Journal of
Econometrics, 130, 337-364.; Guo, B., Han, Q., and Zhao, B. (2014): The Nelson—Siegel Model of the Term
Structure of Option Implied Volatility and Volatility Components, Journal of Futures Markets, 34(8), 788-806.
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where the level, slope, and curvature factors are obtained by regressing the data onto the factor
loadings given a A; value. This procedure yields a time series for the level, slope, and
curvature factors, which are subsequently used to calculate the risk factor shocks of the tenors in
the published global market shock template.

Specifically, risk factor shocks are computed as the difference between pre- and post-
shock risk factor levels. For the pre-shock risk factor levels, the Board uses the most recent data
from the scenario as-of-date. For the post-shock risk factor levels, the Board uses various
approaches for different types of risk factors. Two variations are outlined below. In both
approaches, it is assumed for simplicity that the post-shock value of the curvature factor is
constant and equals its historical time-series average. The only remaining factors in the Nelson-
Siegel model are the level and slope factors; due to this assumption, post-shock values therefore
only need to be estimated for the level and slope factors.

The Board uses the following two approaches. The first approach (Variation A) models
the level and slope factors jointly using the copula model from which post-shock level and slope
values can be generated. For some applications, e.g., public equity option-implied volatilities,
the term structure is better described by estimating the level and slope factors in two subsequent
stages (Variation B).

e Jariation A: In the first variation, the level and slope factors of the Nelson-Siegel model
are modeled using the copula. The modeled time series (r; ;) are the weekly logarithmic
change in the level factor and the slope factor: r;, = (AL;¢, AS;¢)". The model uses
the marginal model in Equation C7 with p; = 0 and the GARCH-t specification in

Equation C9 to describe the time-series dynamics.
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Variation B: In the second variation, the model constructs the post-shock value of the
level factor using a regression:

Equation C16 — Regression Model for Level Factor Log Changes

i', 1 Pit+1
In=*2 = q; + B;In ”: + €441

Ly P
This regression model gives the scenario-specific evolution and the post-shock value of
the level factor using those of p; ;. Next, the framework solves for the post-shock value
of the slope factor by evaluating the post-shock values of the level factor, curvature
factor, and p; ; in the Nelson-Siegel functional form.

Given post-shock levels and slopes, the constant value for curvature, and the estimated

decay factor, post-shock risk factor levels can be computed from Equation C15.

c. Models for Volatility Shocks

The Nelson-Siegel model in Equation C15 is used to generate shocks to term structures of

implied volatility. While the Board aims at maintaining consistent model implementations where

possible, the modeling of volatility shocks involves variation to accommodate differences in

products and data limitations across asset classes. Specifically, three different approaches are

implemented.

(a) Nelson-Siegel-GARCH volatility model: The first approach is applied to public equity

implied volatilities, which have a considerable volatility feedback effect—i.e., a linkage between

returns and implied volatilities. According to the volatility feedback effect (see for example,

Campbell and Hentschel [1992] and Carr and Wu [2017]), with fixed future cash flow

projections, an increase in a market’s systematic business risk—captured by an unexpected

increase in market volatility—increases the cost of capital and reduces the present value of the
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market portfolio.? This effect explains the negative contemporaneous relation between the
volatility shock and the market return. It also implies that the larger the volatility shock, the
more negative the market return.

The model assumes that risk factor dynamics are described by Equation C7 with a
GARCH-t conditional volatility model as supplied in Equation C9. The model can be described
in four steps:

1. For each primary and secondary market selected as the underlying index, calculate
the call option price using the GARCH model-implied, one-week conditional volatility in a
Monte-Carlo simulation.” Impute the implied volatility that produces the same call price using
the Black-Scholes formula.’* Repeat this computation in the pre- and post-shock periods.
Volatility shocks are defined as the difference between implied volatility levels at the as-of date
(pre-shock level) and h weeks after the as-of date (post-shock level). Post-shock volatility
computation reflects the differences in spot shocks resulting from the copula model and
generates the volatility feedback effect; that is, market indices that attain highly negative return
shocks as copula model output also attain large volatility shocks.

2. Using the Nelson-Siegel model with variation B, generate a term structure of implied
volatility shocks for different tenors starting at one week. Due to limitations in the availability of

high-quality implied volatility data, this step is likely only feasible for a subset of risk factors; for

32 See Campbell, J.Y., and L. Hentschel (1992): No News is Good News: An Asymmetric Model of Changing
Volatility in Stock Returns, Journal of Financial Economics, 31(3), 281-318.; Carr P., and L. Wu (2017): Leverage
Effect, Volatility Feedback, and Self-Exciting Market Disruptions, Journal of Financial and Quantitative Analysis,
52(5), 2119-2156.

53 Monte-Carlo simulation prices the option by averaging random paths of the option’s discounted payoff.

54 The Black-Scholes formula for the call option is Call®>(S, 7, K, T, 08%) = SN(d,) — Ke""N(d,) where d, and
Bs)?

d, are defined by: d; = ﬁ(log (g) + (r + %) T) and d, = d; — ¢®SVT. In this formula, S is the stock

price; K is the strike price; T is time-to-expiration; 7 is the risk-free rate; a2 is the volatility; and N(.) is the
standard normal cumulative distribution function.
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example, the set of secondary and primary risk factors (i.e., the estimation subset). Denote this
term structure of Nelson-Siegel model-implied volatilities by Aa}VS () fort > 1weekand j =

1,2:--,N, where N is the number of risk factors in the estimation subset.

3. Reconcile the one-week volatility shocks generated by step one and step two by
computing adjustment factors — by comparing the one-week implied volatility shocks resulting
from the Nelson-Siegel with the one from the GARCH models. The Board computed a simple
adjustment factor to account for this difference, and it is computed for each of the risk factors in
the estimation subset as:

Equation C17 — Nelson-Siegel-GARCH Model Adjustment Factor

. 1 Ny,
Adjustment Factor;, = mzj:l (A0}°(1) — Ao{ARCH)

across developed and emerging markets k= {developed, emerging}. N, _ is the number of risk

factors of type k,,. AO']C’ARCH is the volatility from step one and AO'}-VS(l) is the volatility from

implied

step two. The one-week implied volatility shocks Ao ;. Ky, (1) of market i belonging to market

type k= {developed, emerging} is calculated as the sum of the volatility shock from the GARCH
model and the adjustment factor:

Equation C18 — Formula for One-Week Implied Volatility Shocks

implied _ GARCH .
A0,y (1) = Aoy, " + Adjustment Factor,,

for k={developed, emerging).
4. Generate a term structure of implied volatility for the risk factors outside the

estimation subset. To accomplish this goal, the framework calculates an average of all available
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implied volatility curves for the estimation subset in order to compute a scaling factor d(t ) for
volatility shocks at different tenors 7 relative to the one-week tenor:
Equation C19 — Term Structure Scaling Factor

N Aa;mplied @)

1
6(t) = N Yis1 AgmPTed 1)
where N is the number of risk factors in the estimation set. Using implied volatility

shocks Aa:.mplied(l) from Equation C18 and the scaling factor 8(t) from Equation C19, the

implied volatility shocks for the remaining market indices at all tenors are calculated as:

Equation C20 — Formula for Implied Volatility Shocks at Any Tenor

Ao.i_mplied (‘l') — Aaiimplied (1)5(‘[)

4

(b) The Nelson-Siegel-Copula Volatility Model: The second approach includes spot and

volatility shocks from an asset class in a copula model to generate the remaining volatility risk
factor shocks in that asset class. This approach is applied for, e.g., foreign exchange-implied
volatility curves. Spot shocks in this copula model are the subset of shocks for which spot and
volatility risk factors are generated by the modeling framework of the asset class. Volatility
shocks in the copula are weekly changes in one-month, at-the-money implied volatilities
categorized as either secondary or remaining risk factors. The time-series dynamics of spot
shocks are described consistently with the spot model, while the time-series model of the
volatility shocks is given by Equation C7 with p; = 0 and the constant variance model supplied
in Equation C8. Once the entire set of one-month volatility shocks are generated, the Nelson-
Siegel model is used to populate the implied volatilities for the remaining maturities across the
term structure. Data may not be available for the full set of risk factors. In such cases, this

modeling approach is used for a subset of risk factors, and the remaining implied volatility
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shocks are generated using the scaling approach described in step 4 of the Nelson-Siegel-
GARCH model described in Section C.iii.1.c(a) above.

(c) The Five-Factor Nelson-Siegel Volatility Model: Finally, a third approach is needed to

describe the term structures of swaption-implied volatilities, which involve an additional
dimension. Specifically, modeling this volatility becomes a two-dimensional problem in which
the volatility depends on both option maturity T? and swap maturity T°. The Board models the
swaption implied volatilities using a five-factor Nelson-Siegel functional form to describe both
dimensions for secondary risk factors. This five-factor model is given by

Equation C21 — Five-Factor Nelson-Siegel Model

1 — e~ X T-0
S5,

(TS -1

— e M T-D) — e~ M@-0
N <1e— _ e—A?(TS—t)) s 4 (1 ¢ )S%
S L 0 L
A3(TS —t) A7 (TO —¢)

1— e HT-0
A(T° 1)

O'i,t(TS» TO) =L + (

Two parameters A2 and A5 are obtained by minimizing the calibration error for each
country’s historical data over its sample period.

To calculate the change in implied volatility over the liquidity horizon h, Aa; (TS, T?),
for all (TS, T?) pairs, the model needs level, slope, and curvature factor shocks based on
Equation C21. For simplicity, the Board assumes that the option curvature shock is equal to the
swap curvature shock—i.e., AC gh =AC f r» Which in turn reduces the number of factor shocks to
four: AL; b, AS gh, ASf‘h‘ and AC; . To generate these shocks, the framework uses four implied

volatility shocks for the secondary risk factors, which are chosen from the U.S. dollar, Japanese
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yen, pound sterling, and Euro rates curves. Once these shocks are quantified, the framework
uses different pairs of (TS, T?) and the parameters 42 and 4] in a first-differenced version of
Equation C21 that reveals Ag; , (TS, T?) as a function of AL; 5, AS gh, ASf’h’AC in- Volatility
shocks Aa; 1, (TS, T?) for all swap and option maturities (TS, T?) for the U.S. dollar, Japanese

yen, pound sterling, and Euro rates are computed from this specification. A multiplier method is

used to construct rates volatility curve shocks for the remaining countries.

d. Multipliers, Mappings, Averaging, and the Percentile Method

Some risk factors are difficult to analyze within the scope of the above models due to
either the nature of the data or lack of data. For such cases, the Board uses simpler methods,
such as multipliers, mappings, averaging, and the percentile method.

Multipliers can be interpreted as regression models as described in Section C.iii.1.b,
where the parameters are calibrated using alternative data sources determined from expert
judgement. This approach is used when a statistical relationship between two variables is
expected, but a lack of high-quality data prohibits proper estimation of this relationship.

For some risk factors, reasonable multipliers that can be properly justified may not exist,
and better results can be obtained by other approaches. In such cases, a risk factor may be
mapped to another risk factor—e.g., by setting the shock equal to another risk factor shock or by
averaging a set of other risk factor shocks. These methods are subject to justification and
scrutiny by subject-matter experts and leadership, following the same guidelines and processes
for judgment-based adjustments to scenarios as described in Section B.ii.2.

Finally, the Board applies the percentile method used for generating values of primary

risk factor shocks to set the shock values of some risk factors directly (see Section B.i.). This
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method may be used when there are data limitations and no mappings, multipliers, or averaging
schemes deemed reasonable.

2. Model Applications

Shocks to the remaining risk factors are modeled separately for each asset class because
risk factor shocks within asset classes are more similar and more correlated than risk factors
across asset classes. The consistency and correlation of shocks across asset classes is captured
by the correlations among shocks to primary and secondary risk factors. Table C2 provides an
overview of the modeling approaches applied to spot and volatility shocks within each asset
class. For each asset class, the model input is time-series data of risk factor returns, prices, or
implied volatilities along with the shock values generated for the secondary risk factors. The
output is the risk factor shocks outlined in Table B1. For corporate and sovereign credit shocks
and shocks to the volatility of commodity and rates products, the Board publishes both absolute
and relative shock values. The absolute shocks show either the change in the credit spread level
(corporate and sovereign credit) or the implied volatility level (commodity and rates volatility).
For these cases, the models produce absolute shocks, and the relative shocks are subsequently
calculated as the absolute shocks relative to the corresponding levels on the as-of date. The
following subsections provide additional details on model implementations for most asset

classes.
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Table C2 — Overview of modeling approaches for remaining risk factors by asset class

g;ssl; factor asset Spot/futures curve shocks Option-implied volatility shocks
Agencies Percentile method. N/A
Commodities Nelson-Siegel model, Equation C15 Copula model of one-month

Foreign exchange

Public equity

Public equity
dividends
Interest rates

with variations A and B. Weekly data
for spot prices, as well as futures curve
level and slope factors, are modeled in a
GARCH-copula framework. Univariate
log returns for spot/level factor follow
an EGARCH model described by
Equation C7 with no autoregressive
term (p; = 0,) and C10. The slope
factor is log-transformed, and the
resulting series is modeled with
equations C7 with an autoregressive
term included and C10 as above.
Dependence is modeled with the copula
in Equation C12.

Multipliers.

Copula model of weekly log returns.
Univariate returns follow a GARCH
model described by Equation C7 with

pi; = 0 and C9. Dependence is
modeled with the copula in Equation
Cl12.

Regional mapping.

Copula model of weekly log returns.
Univariate returns follow a GARCH
model described by Equation C7 with

pi; = 0% and C9. Dependence is
modeled with the copula in Equation
Cl2.

Regional mapping.

Percentile method.

Nelson-Siegel model, Equation C15
with variation A, where level and slope
factors are modeled in a copula model.

implied volatility shocks given
Equation C7 with p; = 0, and
C89.

Categorical mapping.

Nelson-Siegel-copula volatility
model.
Regional mapping.

Nelson-Siegel-GARCH volatility
model.

N/A

Five-factor Nelson-Siegel
volatility model.
Multipliers.

35 Setting the autoregressive parameter to zero (i.e., p; = 0) reflects that log prices behave as a random walk; i.e.,
without forecastable patterns. Although subject to debate, this is a well-known assumption in the literature; see
Campbell, J.Y., A.W. Lo, and A.C. MacKinlay (1997): “The Econometrics of Financial Markets,” Princeton

University Press.
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Risk factor asset

class Spot/futures curve shocks Option-implied volatility shocks

Level and slope factors follow univariate
EGARCH models described by
Equation C7 and C10. Dependence is
modeled with the copula in Equation
C12.
Percentile method.
Sovereign credit Copula model of weekly spread changes. N/A
Univariate spread changes follow the
model described by Equation C7 with
pi = 0 and C8. Dependence is
modeled with the copula in Equation
Cl12.
Corporate credit Copula model of weekly changes in N/A
spreads between adjacent ratings.
Univariate spread changes follow a
GARCH model described by Equation
C7 with p; = 0 and C9. Dependence is
modeled with the copula in Equation
C12. The model is implemented
separately for bonds and single-name
CDS.
Multipliers.
Municipal credit Copula model of weekly spread changes. = N/A
Univariate spread changes follow the
model described by Equation C7 with
pi: = 0 and C8. Dependence is
modeled with the copula in Equation

Cl12.

Multipliers.
Other fair value Mapping. N/A
assets
Securitized Ordinary regression models. N/A
products Multipliers and mappings.

a. Commodities
Commodity spot shocks and the Nelson-Siegel level and slope factors of the futures
curve, defined by Equation C15, are modeled jointly using the copula model due to the

advantages of this approach, as discussed in Section C.iii.1.a. This method incorporates the
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variations A and B of the Nelson-Siegel model (see Section C.iii.1.b). Spot and future rates are
modeled jointly to capture the dependence between these risk factor shocks. Future curves are
described by the Nelson-Siegel model for parsimony and to impose a smooth term structure of
futures rate shocks.

For commodities for which data is limited, the Board uses a multiplier method, where
multipliers are computed based on the modeled risk factors. Such multipliers are constructed, for
example, by the ratio of shocks at each maturity to the one-month shock.

The implied volatility of secondary risk factors is modeled using the copula model. Due
to limited data availability, the implied volatility of the remaining risk factors is modeled using

category averages, similar to the regional-average approach applied in foreign exchange.

b. Foreign Exchange

The majority of foreign exchange spot shocks are generated using the copula model due
to the advantages of this approach discussed in Section C.iii.1.a. Implied volatility shocks are
mainly generated using the Nelson-Siegel-copula model, described in Section C.iii.1.c, to capture
the term structure of implied volatilities. Due to limited availability of foreign exchange option
data, the volatility model is estimated for secondary risk factor implied volatilities only, whereas
the remaining implied volatility shocks are obtained using scaling.

Due to data limitations, some shocks to exchange rate returns and their implied
volatilities are generated using mapping and averaging procedures. Specifically, the Board
groups currencies by regions that match risk characteristics or geography. Then, for each region
and data-limited series, the model generates shocks to dollar-exchange rate returns and implied

volatilities by mapping from the respective shock to a single U.S. Dollar exchange rate return or
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implied volatility from the copula model that represents that region, or by mapping to an average
of exchange rate return shocks or implied volatility shocks obtained from the copula model. For
exchange rates that do not involve the U.S. Dollar, exchange rate return shocks are computed
based on shocks to underlying U.S. Dollar exchange rate returns.>® In addition, implied volatility
shocks are computed by averaging representative regional U.S. Dollar exchange-rate implied
volatility shocks across regions. Finally, shocks for pegged currencies are determined by the

shocks for the currencies to which they are pegged.

c. Interest Rates

Informed by academic research, such as Diebold and Li (2006), the Board uses the
Nelson-Siegel model to describe the term structures of government bond yields and swap rates.>’
To preserve a relationship between government bond yields and swap rates within countries,
swap rate shocks are generated by applying the Nelson-Siegel model to swap spreads (i.e., the
difference between a swap rate and the corresponding government bond yield).

Swaption-implied volatility shocks for the secondary risk factors are modeled using the
five-factor Nelson-Siegel model in Equation C21, because these shocks have both a dimension
capturing swaption maturity and a dimension capturing the maturity of the underlying swap.
Only implied volatilities for the secondary risk factors are modeled this way due to lack of
swaption data for other risk factors. A multiplier method is used to construct rates volatility
curve shocks for the remaining countries. These shocks depend intuitively on the relationship

between these countries’ government yield shocks and the secondary risk factors’ government

36 We can infer non-dollar exchange rates from dollar-exchange rates because the exchange rate between any two
currencies is by a no-arbitrage relationship equal to the ratio of each currency’s exchange rate against a third
currency.

57 See Diebold, F. X., and C. Li (2006): Forecasting the Term Structure of Government Bond Yields, Journal of
Econometrics, 130, 337-364.
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yield shocks. Other rates shocks (i.e., inflation and cross-currency versus U.S. dollar basis) are

determined by the percentile method, as described in Section C.iii.1.d.

d. Public Equity

The public equity model generates index shocks using the copula model due to the
advantages of this approach discussed in Section C.iii.1.a and regional mappings, where the
copula cannot be implemented due to lack of data. Mapped risk factors are assigned by mapping
the shock to a regional index that matches its risk characteristics or geography.

Implied volatility shocks are generated using the Nelson-Siegel-GARCH model
described in Section C.iii.1.c, because equity returns have a considerable volatility feedback
effect; see, e.g., Campbell, J.Y., and L. Hentschel (1992).® The model is estimated only for
primary and secondary risk factors, because they have ample options data with various times-to-
maturity and reflect the characteristics of major developed and emerging equity markets. The
Nelson-Siegel model decay parameter for each market, 4;, is estimated using crisis-period®® data
only, as a full-sample estimation results in volatility curves with a slow decay for some markets,
with the implication that the long-tenor volatility shocks for these markets are too severe relative

to other markets.

e. Sovereign Credit

The sovereign credit model produces sovereign five-year credit default swap spread

shocks to selected countries, e.g., Australia, Canada, and France, using the copula model due to

58 See Campbell, J.Y., and L. Hentschel (1992): No News is Good News: An Asymmetric Model of Changing
Volatility in Stock Returns, Journal of Financial Economics, 31(3), 281-318.

% For this purpose, crisis periods are defined as times where the S&P 500 index return (the public equity primary
risk factor) experiences values in the bottom tenth percentile of its historical distribution.
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the advantages of this approach discussed in Section C.iii.1.a. Due to lack of data, some

countries’ CDS spread shocks are mapped to other countries based on regional similarities.

f. Corporate Credit

The corporate credit model uses the copula model to describe shocks to advanced-
economy bonds and single-name CDS across different ratings due to the advantages of this
approach discussed in Section C.iii.1.a. Unlike the public equity and the foreign exchange
models, spread shocks for credit ratings have a particular cross-sectional pattern; that is, shocks
are monotonically increased as credit quality deteriorates (from AAA-rated securities to CCC
securities). To preserve this desirable pattern in modeled results of both securities, the approach
focuses on modeling the shock to the BBB-rated spread and the shocks to changes in spreads
between adjacent ratings (spacings), e.g., AAA-AA, AA-A, and A-BBB.

Due to lack of data, the remaining corporate credit shocks are obtained using various
multipliers on the model-generated shocks. For example, the emerging market bond shocks are
calculated by weighing the advanced economy bond shocks by a multiplier given by the
Corporate Emerging Markets Bond Index Credit Investment Grade Strip spread (a secondary risk
factor) divided by the sum of advanced economy bond shocks across ratings AAA, AA, A, and

BBB.

g. Municipal Credit

In municipal credit, changes in spreads on municipal AAA- and A-rated bond indices are
modeled using the copula model due to the advantages of this approach discussed in Section
C.iii.1.a. Changes in spreads bond, CDS, and other municipal credit products across different

credit ratings are generated using multipliers due to data limitations.
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h. Other Fair Value Assets

Other Fair Value Assets (OFVA) cover illiquid fair value securities that cannot be
grouped into another asset class. Some examples for OFVA are public welfare investments
covering housing credit, tax credits, and energy investments. Due to government guarantees,
these investments are subject to low loss rates. Shocks to housing credit and tax credit are set at
-4.9 percent and shocks to energy investments are set at -13.9 percent. For other OFVA, the
Board sets a simple mapping rule in which equity shocks are equal to the S&P 500 return, and

debt shocks are equal to the B-rated high yield leverage loan index shock from corporate credit.

i. Securitized Products

Securitized products include non-agency commercial and residential mortgage-backed
securities, asset backed securities, and other products including corporate collateralized debt
obligations, corporate collateralized loan obligations, and warehouse loans. All shocks are
specified as market value haircuts, expressed in percentage terms, and applied over a liquidity
horizon of three months. Market value haircuts are generated for representative portfolios
constructed by sampling securities across three dimensions: product types (e.g., residential
mortgage backed securities), vintages (e.g., < three years), and ratings (e.g., AAA). The purpose
of the representative portfolios is to provide a reflection of how the prices of current outstanding
tranches of a given security type would respond to shocks to spreads. For a portfolio indexed by
r, the market value haircut is defined as:

Equation C22 — Definition of Market Value Haircut

P! (post-shock) — PY(pre-shock)
P? (pre-shock)

Market value haircut, =
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where PF (pre-shock) denotes the portfolio value before the shock and PF (post-shock) is the
portfolio value after an appropriate spread-widening shock is applied.

The Board constructs these representative portfolios from individual securities by
sampling a vendor-provided universe of asset-backed securities using a set of general rules (for
example, the security status is active; pool factor®® is greater than 10 percent; maturity is greater
than or equal to one year; coupon data is valid, i.e., non-zero and non-N/A) and a set of product-
specific rules (for example, including fixed-rate coupons for securities backed by auto loans). A
representative portfolio typically contains at least ten securities.®! In cases where an initial set of
rules returns a portfolio with fewer than ten constituents, the portfolio definition is expanded to
include one or more neighboring vintages.®®> Portfolio weights are given by the current amount
outstanding on each underlying bond normalized by the total outstanding amount such that
weights sum to one for each portfolio. Outstanding amounts are measured on the pre-shock date,
as defined below. Specifically, for a portfolio r constituted by N,. securities with outstanding
amounts® given by B;(pre-shock) for securities indexed by i = 1,2, -, N, the portfolio
weights are:

Equation C23 — Representative Portfolio Weights

__ Bj(pre-shock)
L Ty a—
2;=1 Bi(pre-shock)

%0 The percentage of the original principal that remains outstanding.
81 Portfolios are typically comprised of between ten and 30 securities.

%2 If vintage expansion does not yield a sufficiently large number of tranches, shock values are identified by
mappings and multipliers, as described in Section C.iii.1.d. The portfolio definition is not expanded across rating
grades because a portfolio covering several rating grades would fail to assign risk-sensitive shocks to lower-rated
securities.

%3 Given for each bond by the number of outstanding bonds multiplied by its face value.
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Portfolio values are computed as the weighted average of the prices of the constituent
securities. Specifically, for a portfolio indexed by r constituted by N,. securities, the value is
given as:

Equation C24 — Representative Portfolio Value
Ny
PR =) wiP(®),
i=1

where P (t) for ¢ in {pre-shock, post-shock} defines the pre-shock and post-shock prices of
individual securities. The remainder of this section describes how the Board obtains these prices
to compute the market-value haircuts. This method is fundamentally different from other classes
because of the specialized nature of securitized debt. We implement this methodology to ensure
that pricing of asset-backed securities and the modeling of subsequent market value shocks
properly accounts for the idiosyncratic waterfall structure of the securitized debt when
computing discounted cashflows. The method involves product prices and spreads at the
portfolio level (across product types, ratings, and vintages), for product indices (across product
types and ratings), and for individual securities. To distinguish these levels, prices and spreads
are denoted with superscripts as follows:

e PY(t) and S¥(t) are prices and spreads for representative portfolios, indexed by .

o P}, r(t) and S]I-’ r(t) are prices and spreads for a product index with rating R, indexed by j.

e P}(t) and S3(t) are prices and spreads for individual securities, indexed by i.

The pre-shock price of a security i, P$ (pre-shock), is defined as the security’s price on a

pre-determined, pre-shock date. Given this pre-shock date, prices are obtained from a third-party
vendor. For liquid securities, the vendor price is typically close to commonly used pricing

information available to market participants such as the Trade Reporting and Compliance Engine
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(TRACE) prices. For illiquid securities, the vendor relies on model-based valuations that
consider the last traded price, prices of similar traded securities, and broker input.

The post-shock price of a security i, P$(post-shock), is computed using a vendor cash
flow engine, which computes, at time #, the prices of an individual security P$(t) given a spread
§%(t) over the spot rate curve that reconciles the value of the bond with its market price:

Equation C25 — Pricing (Cash Flow) Engine
PS(t) = fi. (S5®)).
The function f;(-) represents the pricing (cash flow) engine. It has security-level and
time subscripts (i, #) because it uses security-level characteristics defined and provided by the

vendor at a given point in time. The Board applies characteristics of the collateral at the pre-

shock date for simplicity—that is, f; () = fi pre-shock (-)—though these may change between the

pre-shock and post-shock dates. The characteristics of the collateral capture credit risk (e.g.,
default rates, delinquencies, collateral quality as measured by loan ratings and corporate
leverage, and subordination levels), interest rate risk (e.g., reference curves such as Treasury
swap, and the Secured Overnight Financing Rate, prepayment speed, and duration), market risk
(e.g., bid-ask spreads), and other risks (e.g., capital waterfall and issuer/servicer risk). The Board
uses the vendor’s default set of characteristics, which vary by product type. For example, for
commercial mortgage-backed securities, the default prepayment values are set to zero as
prepayments are typically restricted or penalized. In contrast, prepayments are a more important
characteristic for residential mortgage-backed securities, and their default values are set by the

underlying collateral.
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The post-shock price of security i is computed by applying the cash flow engine on a
stressed spread, given by the sum of a pre-shock spread S (pre-shock) and a stressed term AS}:
Equation C26 — Post-Shock Price of Individual Securities

P?(post-shock) = fipre Shock(Sls(pre-shock) + AS,-S).
For operational efficiency, the Board applies the pricing engine over a non-uniform grid
(i.e., 100, 200, 500, 1000, and so on basis points). This step allows the Board to pre-run these
computations before the spread shocks are finalized. Specifically, prices are computed for
(5% (pre-shock) + As) for As = {100, 200, 500, 1000...} basis points.
The pre-shock spread S} (pre-shock) is computed from the pricing engine given the pre-
shock price P?(pre-shock):
Equation C27 — Pre-Shock Spread of Individual Securities
S,-S(pre-shock) = fi_,;}re shock(Pl-S(pre-shock)),
where f Zl}re_shock(-) refers to solving for the spread given a price in the pricing engine.

The Board models the stress in the spread of security i, AS ?, at the level of representative
portfolios. For a security i represented by portfolio r, the spread shock is AS ,S = ASP. Stressed
spreads of representative portfolios are modeled given spread shocks to AAA-rated securitized
product indices: AS}' aaa Where j denotes the index (e.g., the fixed-rate AAA-rated residential
mortgage-backed security index). These AAA-rated index spread shocks are secondary risk
factors,® chosen because they represent the bulk of issuance and trade in the most liquid

markets.

% Shocks to these secondary risk factors are modeled using the Baa-Aaa spread as explained in Section C.ii.
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The model has two steps. The first step uses ordinary regressions to project log-
differences of spreads of indices for all other ratings R (e.g., AA, A, and BBB), Aln S]I-,R (t),
onto the log-differences of spreads for AAA-rated indices for each product index j,

Aln S}‘ aaa(t). Here, the argument # indicates the time dimension of the log-differenced spread
data. Log-differences are defined over the three-month liquidity horizon.®> This modeling
approach is chosen as it is a simple method that captures how systemic risks impact securitized
product tranche spreads.®® The regression specifications are as follows:
Equation C28 — Regression Model for Index Spreads
AlnSjp(t) = aj + B;AIn S] 445 (8) + £(D),

where g;(t) is normally distributed with mean zero and variance aé]-. The coefficients

are estimated using ordinary least squares, giving estimates @, B:, and 62]- such that the change

in the logarithm of the expected spread shock for index j with rating R given the spread shock to
the corresponding AAA-rated index can be computed as:

Equation C29 — Post-Shock Index Spread

S}_AAA(pre-shock) + AS]I-_AAA> N 6?1-

Aln S! . (post-shock) = @&; + B;1n
7R (P ) =&+ B < S} aaa (pre-shock)

%5 Specifically, letting S}l g (t) denote monthly spread data for index j with rating R at month ¢, the log difference is
given as: AInSjx(t) =InSje(t) —InSje(t —3M).

% Idiosyncratic risks are likely to average out because the model is considering indices rather than individual
securities. Moreover, the literature (for example, Coval et al. [2009] and Hamerle et al. [2009]) has emphasized that
the pooling and tranching process involved in securitization causes structured product tranches to load more heavily
on systemic risks than non-securitized debt securities with comparable probabilities of default. See Coval, J. D.,
Jurek, J. W., & Stafford, E. (2009). Economic Catastrophe Bonds. American Economic Review, 99(3), 628-66.;
Hamerle, A., Liebig, T., & Schropp, H. J. (2009). Systematic Risk of CDOs and CDO Arbitrage. Deutsche
Bundesbank Discussion Paper Series 2. No. 2009, 13.
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where S}' aaa (pre-shock) is the spread of the AAA-rated index j on the pre-shock date. The
variance term 63 j/2 1s added to account for the convexity term when taking the expectation over

the logarithmic function in Equation C31.

The second step of the model calculates the spread shock, ASY, under the assumption that
the shock impacts the spread of representative portfolios by the same amount as its impact on the
index. Specifically, for a representative portfolio r, for the product type described by index j
with rating R, the Board assumes that:

Equation C30 — Mapping Representative Portfolio Spread Shocks to Index Spread Shocks
AlnSP(t) = Aln S;-,R(t).

This is a simplifying assumption that facilitates the computation of the post-shock spread
of the individual securities, based on the indices for which data is available.®’” Given this
assumption, the spread shock for representative portfolio r for the product type described by
index j is given by:

Equation C31 — Representative Portfolio Spread Shock

AS? = ST (pre-shock) [exp(AIn Sj p(post-shock)) — 1],
where ST (pre-shock) is the pre-shock spread of the representative portfolio approximated using
the pre-shock spreads for individual securities given by the pricing engine (see Equation C27)
and portfolio weights:

Equation C32 — Pre-Shock Representative Portfolio Spread

1 M
S?(pre-shock) = — E w;S? (pre-shock).
Nr i=1

7 Due to lack of data, the assumptions cannot be justified numerically.
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Using AS? as proxies for AS ls in the pricing engine in Equation C26, the Board obtains
the post-shock prices of individual securities, which are used in Equation C24 to compute post-
shock values of the representative portfolios.®® Finally, market value haircuts are computed
using Equation C22.

This approach is not feasible for all products due to limited data availability. For
products with lack of data (e.g., wholesale loans, ABS credit card and student loans, and
portfolios with ratings lower than BBB), shocks are computed using multipliers and mappings as
described in Section C.iii.1.d.

3. Assumptions and Limitations

Model-estimated correlations are assumed to reflect behavior under market stress.
Models using the copula framework rely on estimating a correlation matrix of innovations.
These correlations are based on long time series of data that capture a range of both stressed and
non-stressed conditions. While numerous studies suggest that correlations between asset price
movements are linked to crisis behavior (e.g., Junior and Franca, 2012), more recent samples
might better reflect current market conditions.%® The Board attempts to mitigate this risk by
regularly assessing the current environment to make sure that the estimated models behave
according to expectations. In the case that model estimation results do not adhere to

expectations, the Board may apply overrides to model results to reflect the desired conditions.

68 If AS? falls within grid points, linear interpolation is used to compute the post-shock price. To illustrate, assume
that As; < AS} < As,, where As, and As, are grid points (i.e., As;, As, € {100,200,500,1000,--}). Let

(ASS-Asq)
P?(post-shock) =f i,pre_shock(SiS(pre-shock) + Asl) + (As;_A:) [f i,pre_shock(Sls(pre-shock) + Asz) —

fipre shock(S?(pre-shock) + As1)]. If @; exceeds the maximum grid point (AS,,,), the Board computes
P (post-shock) = f; asS (SP MK 4 A pay)-

4

% See Junior, L.S. and 1.D.P. France (2012): Correlation of Financial Markets in Times of Stress, Physica A:
Statistical Mechanics and its Applications, 391(1-2), 187-208.
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For circumstances that may represent structural shifts and therefore are likely to raise similar
concerns in future stress test cycles, the Board may invest resources into developing models to
account for such structural changes.

When simulating shock values in the copula model, the secondary risk factor shock is
assumed to be distributed evenly across the A-week horizon. This is a simplifying assumption.
The Board has tested other distributional assumptions (e.g., assuming that the entire shock is
realized over the first week of the horizon) but did not pursue them because they had a small
impact on simulated shock values.

For products with credit ratings, the models assume, for simplicity, that securities do not
undergo rating transitions, which is a reasonable assumption given the instantaneous nature of
the global market shock component. However, if ratings changes do occur, abstracting from
rating transitions when generating shocks may understate (overstate) risk if ratings are
downgraded (upgraded). The Board prioritizes simple and tractable models and therefore
accepts this limitation without attempts to mitigate the risk associated with it.

The pricing of asset-backed securities does not account for collateral performance and
interest-rate risk along the term structure. The current approach may underestimate the market
value haircuts that would occur under a combination of spread stresses and collateral
performance degradation. The stressed collateral performance assumptions could be set as
judgmental parameters and would aid in further increasing the severity of the market value
haircuts. However, the magnitude of the haircuts, under the current approach, appear sufficiently
severe. Interest-rate risk is not stressed at different tenor points due to the structure of the vendor

data. This practice is inconsistent with the rates shocks produced by the global market shock.
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The Board acknowledges this limitation and is planning to conduct future model development
work to address this potential issue.

For some risk factors, data limitations hinder the application of econometric models, such
as the copula model or regressions. In such cases, the Board applies simpler methods, such as
mapping risk factors to other, similar, risk factors for which data exists. Other methods involve
averaging across multiple risk factors or using multipliers to link risk factors. These approaches
ignore the fact that relationships between risk factors may change over time and scenarios. The
Board therefore revises these methods on a continuous basis.

iv.  Alternative Modeling Choices

The dependence among risk factor shocks (from primary to secondary, or from secondary
to all remaining) can be modeled using a myriad of different models. As part of an evaluation of
models, the Board tested the performance of the models described above to that of other
modeling choices. These tests evaluate the abilities of the models to generate shocks that match
the severeness of past crises given the available data and conditions at the crisis’ outset. For
example, the Board considers the 2007-2009 financial crisis, the European sovereign debt crisis,
and the COVID-19 pandemic.

The modeling choices can be varied in different dimensions. One dimension is to replace
all models—both those used to translate primary risk factor shocks to secondary risk factor
shocks and those used to subsequently translate secondary risk factor shocks into shocks for all
other risk factors—with simpler models, such as ordinary regressions. The ordinary regression
model, described in Section C.ii.1.c, is considered the simplest and most widely used statistical
method. This alternative model is thus in line with the Board’s stress test principle of simplicity.

However, the Board generally finds that this alternative model would fail to generate sufficiently

www.federalreserve.gov



64 Model Documentation: Detailed Modeling Approach

severe shocks to reflect market distress and heightened uncertainty; that is, this model would fail
to satisfy the purpose of the global market shock as discussed in Section A, because ordinary
regression models predict the expected shock value given historical shock values in both normal
and stressed times. In contrast, models such as the copula model described in Section C.iii.1.a
and the quantile regression model described in Section C.ii.1.a are designed to capture tail
outcomes of the dependent variable.

Another alternative approach would be the use of more complex models. For example,
the Board models secondary risk factors using univariate models (mainly, quantile regressions
and quantile autoregressions), which characterize each risk factor independently from others. As
an alternative, this univariate modeling approach could be replaced by multivariate models that
describe all risk factors within each asset class jointly. This feature is more flexible and
potentially captures broader risks than the application of univariate models, but it comes at the
cost of having considerably more parameters that would need to be estimated. More parameters
both increase computational cost and impair the accuracy associated with estimation.

The Board has tested the performance of two multivariate modeling frameworks for
describing secondary risk factor shocks in order to better understand and weigh the effects of
these tradeoffs. First, the Board considers the copula model, which has multiple advantages as
described in Section C.iii.1.a and is used for modeling the shocks to the remaining risk factors.
Despite the flexibility of the chosen copula model, it does not capture time-variation in
correlations across risk factors. To test a model that captures this aspect, the Board considers the

dynamic conditional correlation (DCC) model from Engle (2002) as a second multivariate
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approach.”’ The DCC model is designed to capture time-varying correlations between multiple
time series. It decomposes the conditional covariance matrix Hy, i.e., the variances and
covariances of all risk factor shocks at time # given past realizations of risk factor shocks, as
follows:
Equation C33 — Decomposition of Conditional Covariance Matrix
H; = D.R,D;,,

where D, is a diagonal matrix with standard deviations from univariate GARCH models on the
diagonal, and R, is a time-varying correlation matrix.”! Since the covariance matrix is time-
varying, this model captures that covariances in stressed times can be different from covariances
in other times. To generate scenarios reflecting market stress, the Board applied the covariances
sampled from periods coinciding with past crises.

In doing so, the Board found that using these multivariate methods to generate secondary
risk factor shocks gives similar results as the chosen univariate models.”*> Therefore, given the
increased complexity and computational cost associated with these alternative models, the Board

has determined that the chosen models are more appropriate methods.

7 Engle, R. (2002): Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive
Conditional Heteroskedasticity Models. Journal of Business & Economic Statistics, 20(3), 339-350.

al,t eee 0
" More specifically, D, = ¢ ~ i |withoy, fori=1,...,N described by the GARCH-t model in Equation
0 eee aN,t
1 ee aN,l,t
C9,and R; = : i |, where gy, is a correlation parameter between risk factor i=1,...,N and risk
OiNt 1

factor j#i.

72 For example, the mean absolute error from fitting public equity returns during the Great Financial Crisis is only 4
percent lower when using the multivariate DCC model compared with the univariate downside risk regression
models.
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v.  Examples

This section provides examples of estimated model parameters for certain key models—
1.e., quantile regression, downside-risk regression, quantile autoregression, the copula model, and
the Nelson-Siegel model. The examples are included to illustrate the different approaches
numerically, rather than to report the full set of results comprehensively. As the global market
shock scenario involves thousands of risk factors, a comprehensive report of all estimated model
parameters is not feasible.

The examples focus on models for spread shocks to corporate bonds, returns on selected
market indices, and the implied volatilities of selected equity index options. These risk factors
are chosen because their modeling approaches cover the key models listed above, and they
involve relatively few model parameters to report. Parameter estimates are reported for the
global market shock component of the 2025 severely adverse scenario. For this scenario, all
models are estimated on data available up to the estimation cut-off date of June 28, 2024. The
Board chooses this cut-off date relative to the as-of date of the next stress test (October 11, 2024
for the DFAST 2025 exercise) such that the two dates are both sufficiently close to one another
to allow the parameter estimates to reflect the recent changes in the market environment and
sufficiently distant from one another to allow the Board to make an initial assessment of its
scenario choices prior to the as-of date.

1. Quantile Regression

As discussed in Section C.ii.l.a, quantile regression is the primary model used by the
Board to generate shock values to secondary risk factors given primary risk factor shocks. This
section shows a numerical example for corporate credit bonds in developed markets. As shown

in Table C1, the primary risk factor is the Moody’s Baa-Aaa credit spread. This factor is used to
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generate shock values for two global corporate bond indices obtained from a third-party vendor:
namely, a BBB-rated index and a BB-rated index.

The data are monthly (end-of-month) spread changes, which are calculated from index
option-adjusted spreads collected at the daily frequency from December 1996 to June 2024.
Missing data are forward filled.”> Monthly spread changes are calculated by subtracting the
previous month's end-of-month index spread from the current month's end-of-month index
spread.

Given these data points, the parameters of the quantile regression in Equation C1 given
the 90™ percentile are estimated using the algorithm from Koenker and D’Orey (1987).”* The
90'™ percentile is chosen to reflect the severity of the shock value for the Baa-Aaa spread change
used for the global market shock component of the 2025 severely adverse scenario, following the
procedure outlined in Section B.ii.1. Results are shown in Table C3. The estimated coefticients
reveal a positive and statistically significant relationship between the Baa-Aaa spread changes

and the changes in the corporate credit bond market indices.

73 That is any missing observation is populated by the most recently available data point.

74 See Koenker, R., and D’Orey, V. (1987): Algorithm AS 229: Computing Regression Quantiles, 36(3), 383-393.
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Table C3 — Estimated Coefficients for the Quantile Regression Describing the Corporate Bond
Spreads in the Set of Secondary Risk Factor Shocks.

The model is given by Q.99 (rft‘1|rft‘1) = 9o + Tit1P0.90. Where Qg oq (rf,t,l|rft‘1) is the 90" conditional
percentile of the secondary risk factor shock, rf t1, given the primary risk factor shock, rf t1. The
primary risk factor shock is the Moody s Baa-Aaa corporate credit spread. The quantile regression is
estimated at the 90" percentile for the 2025 global market shock component of the Severely Adverse
scenario because the three-month Baa-Aaa corporate credit spread is chosen at a severity
corresponding in the top 10" percentile of the distribution of historical data. The data series are
monthly option-adjusted spreads from December, 1996 to June, 2024. Standard errors are reported in
parentheses. P-values (p) are indicated as follows: * p<0.10, ** p<0.05, *** p<0.01.

(1) (i1)
BBB-rated BB-rated index
index

®ooo 0.163° 0.391""
(0.015) (0.022)

Booo 1.591° 2.914™
(0.125) (0.148)

2. Downside Risk Regression

The Board uses downside risk regressions to generate shocks to public equity secondary
risk factors given the S&P 500 index return (see Table C1). Secondary risk factors include the
DAX index, the FTSE 100 index, and the Nikkei 225 index to represent developed markets, and
the MSCI Emerging Market (EM) Latin America Index to represent emerging markets.

The data are monthly (end-of-month) log-returns, which are calculated from index prices
collected from a third-party vendor at the daily frequency May 1997 to June 2024. Missing data
are forward filled. Monthly log-returns are computed by first-differencing the logarithm of end-
of-month index prices.

Given these data points, the parameters of the downside risk regression in Equation C5
are estimated using ordinary least squares. The estimates are shown in Table C4. The estimation

results emphasize the co-movements of market returns, particularly during market declines. The
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positive and statistically significant estimates of y imply that the secondary market index returns
co-move with the S&P 500 index return more in market declines than in market rallies. The
parameter estimates are used in conjunction with a shock value for the S&P 500 index return to
generate scenario shocks for the DAX, FTSE 100, Nikkei 225, and MSCI Emerging Market
(EM) Latin America indices. All shocks are reported as arithmetic returns. These shocks are
subsequently reviewed by the Board for plausibility and consistency with the scenario narrative.

Table C4 — Estimated Coefficients for the Downside Risk Regressions Describing Equity Index
Returns in the Set of Secondary Risk Factor Shocks.

The model is given by E(ris_t_1|rf_1) =a+ rihﬁ +1 P, <0V’ where rf_l is the one-month S&P 500 index

return. The data series are monthly log returns from May 1997 to June 2024. Standard errors are
reported in parentheses. P-values (p) are indicated as follows: * p<0.10, ** p<0.05, *** p<0.01.

0 (ii) (i) (iv)
DAX index FTSE 100 index Nikkei 225 index MSCI EM Latin
America index

a 0.004 0.001 0.007" 0.006

(0.003) (0.002) (0.004) (0.006)
B 0.947" 0.595™" 0.494™ 0.937°"

(0.092) (0.062) (0.104) (0.154)
y 0.251° 0.165° 0.507" 0.617"

(0.145) (0.098) (0.165) (0.244)

3. Quantile Autoregression

For each public equity market, the Board publishes not only the spot shocks but also
implied volatility shocks with tenors ranging from one month to three years. These volatility
shocks are the changes in the implied volatility level over the one-month liquidity horizon. To
ensure the consistency between spot and volatility shocks within each market, the Board uses

quantile autoregressions that receive spot shocks as input as specified by Equation C3.
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The dependent variables of the quantile autoregressions are the implied volatilities of
secondary markets with one-month tenor. For developed secondary market indices, the Board
uses the price level and the at-the-money implied volatility level of the same index. For the
emerging secondary market index, the Board maps the MSCI Latin America index to Bovespa
(Brazil) market volatility because Bovespa constitutes more than 50 percent of the regional
index. The Board collects these data series from a third-party vendor.

The quantile autoregressions are estimated using monthly volatility data, which are
calculated as end-of-month volatility observations with missing data treated by forward-filling
along with monthly log-returns. The data samples are May 1997 to June 2024 for the S&P 500
index; January 2002 to June 2024 for the DAX and FTSE 100 indices; May 2004 to June 2024
for the Nikkei 225 index; and March 2011 to June 2024 for the emerging market index.

Results are shown in Table C5. The results emphasize the persistence of implied
volatility time series with the coefficients loading on past volatility (f8g.9¢) estimated close to
one. The results also show the dependence of market volatility on the underlying index returns,
as the coefficients pg 9o are statistically significant for all indices. These coefficients are
estimated with a negative sign, consistent with more extreme (i.e., more negative) returns being

associated with higher implied volatility.
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Table CS — Estimated Coefficients for the Quantile Autoregression Describing Equity Index
Option One-Month (1M) Implied Volatilities in the Set of Secondary Risk Factor Shocks

The model is given by Qo.00(03¢103 -1, T161) = @o.90 + Ti61B0.90 + T3¢-1P0.90 Where Qooo(07107¢_1,T141)
is the 90" conditional percentile ofaislt given O'ft_1 and the one-month return of the index underlying
the option, r;;,. The data series are one-month implied volatilities at the monthly frequency from
May 1997 (S&P 500), January 2002 (DAX and FTSE 100), May 2004 (Nikkei 225), or March 2011
(CBOE Brazil ETF) to June 2024. Standard errors are reported in parentheses. P-values (p) are
indicated as follows: * p<0.10, ** p<0.05, *** p<0.01.

(1) (i1) (iii) (iv) (v)
DAX IM FTSE 100 IM  Nikkei 225 1M CBOE Brazil ~ S&P 500 IM
Implied Implied Implied ETF 1M Implied
Volatility Volatility Volatility Implied Volatility
Volatility

®poo 0.0357 0.041™ 0.060™" 0.020 0.042""
(0.007) (0.002) (0.017) (0.027) (0.006)

Booo 1.0017 0.953"* 0.921°* 1.138° 0.962""
(0.064) (0.042) (0.164) (0.135) (0.053)

Pogo -0.6827" -0.840™*" -0.531°" -0.698""" -0.769"""
(0.038) (0.065) (0.133) (0.085) (0.070)
4. Copula

For an example of estimation results for the copula model, consider the developed market

corporate credit bond spreads for which Section C.v.1 illustrated the generation of secondary risk

factor shocks using the quantile regression. The remaining risk factors within this group of

securities are corporate bonds rated AAA, AA, A, B, and lower than B. Shock values are

generated by estimating the copula model explained in Section C.iii.1.a on weekly changes in

credit spacings between various ratings. Specifically, the copula model is estimated on the

following spacings: AA-AAA, A-AA, BBB-A, BBB, BB-BBB, B-BB, and CCC-B.

The data are weekly spacing changes computed from option-adjusted spreads on

corporate bond indices with ratings from AAA to CCC. These data series are sourced from a

third-party vendor between January 1, 2005 and June 28, 2024 at the daily frequency. First, daily
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spacings are computed by taking the difference between index spreads with adjacent ratings.
Then, the daily spacings are converted into weekly changes in spacings by differencing the
spacings between Wednesdays.”

The copula model is estimated in two steps. First, the marginal model for each spacing,
given by Equations C7 and C9, is estimated using maximum likelihood. These parameter
estimates are shown in Table C6. The results show significant GARCH effects as the parameter
loading onto past volatility in the GARCH Equation C9, ¢;, is statistically significant for all
spacings. The estimation results also show the fat-tailed behavior of the data as the degree-of-
freedom parameter, v;, is estimated in the range of about 2.5-4.7% In the second step, the
parameters of the dependence structure, the joint degree-of-freedom parameter and covariance

matrix (v and X in Equation C12), are estimated. These results are shown in Table C7.

75 If Wednesday data is missing, the difference is taken as of Tuesday. If Tuesday data is missing, the difference is
taken as of Thursday. If Thursday is also missing, the corresponding observation is dropped from the sample.

76 For v; — o, the Student-t distribution converges to a normal distribution, which, by definition, does not feature
fat tails.
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Table C6 — Estimated Coefficients for the GARCH-t Model Describing Corporate Bond Spacing
Spreads.

The model is given by ryy = W; + &;¢, Where &;, = 0;,4Z;, with the GARCH-t model aiz_t = w; + qbia?_t_l +
¢i£§t_1 and z;~t(0,1,v;). The GARCH-t model is estimated with variance targeting, introduced by Engle
and Mezrich (1996), where the term ; is calculated as the unconditional sample variance multiplied by (1 —
Y, — ¢,).”7 The data series are weekly spreads from January 1, 2005, to June 28, 2024. Standard
errors are reported in parentheses. P-values (p) are indicated as follows: * p<0.10, ** p<0.05, ***
p<0.01.

(1) (i1) (iii) (iv) (v) (vi) (vii)

AA-AAA  A-AA BBB-A  BBB BB-BBB B-BB CCC-B
w;  0.009 -0.053" -0.224™  -0.464™"  -0.679"  -0.629"  -0.914"

(0.035) (0.031) (0.062) (0.118) (0.280) (0.244) (0.423)
w; 0511 0.117 0.489 1.747 7.953 9.514 17.271

Y; 0340 0201 0.198™"  0.294™  0.180""  0.213""  0.087"
(0.001) (0.001) (0.024) (0.005) (0.030) (0.016) (0.000)
¢; 0.647 07877 07797 0.684™  0.788""  0.757""  0.903"
(0.001) (0.002) (0.028) (0.006) (0.371) (0.017) (0.000)
v, 3.1127  3.583"  3.084™ 4178 4279 3487  2.585™
(0.191) (0.304) (1.271) (0.333) (0.418) (0.326) (0.062)

Table C7 — Estimated Correlation Matrix and Degree of Freedom Parameter for the Copula
Model of Corporate Bond Spacing Spreads

The correlation matrix is estimated by using Kendall’s tau formula in Equation C14. To
determine the degrees-of-freedom parameter, bivariate copula models between all pairs of bond
spacing spreads are first estimated. The degrees-of-freedom estimate is the tenth percentile of
estimated degree-of-freedom parameters from these bivariate copulas. The data series are
weekly spreads from January 1, 2005 to June 28, 2024. The Board’s calibration of these
parameters does not include measures for conducting inference, and standard errors are therefore
not reported in the table.

AA-AAA  A-AA BBB-A BBB BB-BBB B-BB CCC-B

AA-AAA 1 -0.034 0.107 0.218 0.122 0.147 0.141
A-AA -0.034 1 0.288 0.632 0.417 0.336 0.264
BBB-A 0.107 0.288 1 0.796 0.504 0.449 0.384
BBB 0.218 0.632 0.796 1 0.643 0.527 0.442
BB-BBB 0.122 0.417 0.504 0.643 1 0.524 0.422
B-BB 0.147 0.336 0.449 0.527 0.524 1 0.303
CCC-B 0.141 0.264 0.384 0.442 0.422 0.303 1
Degrees of freedom:

5.498

77 See Engle, R., and Mezrich, J, (1996): GARCH for Groups. RISK, 9(8), 36-40

www.federalreserve.gov



74 Model Documentation: Detailed Modeling Approach

5. Nelson-Siegel Model

The Nelson-Siegel model is used to generate shocks along the term structure as explained
in Section C.iii.1.b. For example, the Board uses the Nelson-Siegel model to generate shock
values to implied volatilities of primary and secondary public equity indices for different tenors,
given the one-month implied volatility shocks generated using quantile autoregression as
explained in Section C.v.3. For this purpose, the Nelson-Siegel model is estimated using daily
at-the-money implied volatilities’® sourced at daily frequency from a third-party vendor. Missing
data points are forward filled. The estimated decay parameter (4;) and the means and standard
deviations of the estimated level, slope, and curvature factors are shown in Table C8. The table
also shows the coefficient from regressing the log-changes of the estimated level factors onto

log-changes in one-month implied volatilities. All parameters are statistically significant.

78 That is the implied volatility of options for which the current market price of the underlying asset is close to or
equal to the option’s strike price.
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Table C8 — Estimation Results for the Nelson-Siegel Model Describing the Term Structures of
Equity Index Option Implied Volatilities

The table reports results for indices belonging to the set secondary risk factors, which comprise the estimation
—A;(T—-t —24;(T—-t
subset. The model is given by p; ((T) = L4 + <1_/181Tl—(t))) it (I_ZTL_(O) - e_’li(T_t)) C;. where A; is the
decay parameter and {L;, S, Ci .} are level, slope, and curvature factors. The decay parameters are
estimated separately for each market by numerical minimization of the sum of squared errors using implied
volatility data sourced from a third-party vendor. The public equity implied volatility model uses Variation B to
generate post-shock values, which involves regressing log-changes in the estimated level factor Ly, onto log-
Lit+1 =B, Pic+1(t+1M)
Ly ¢ Pig(t+1M)
from May 1, 1997 (S&P 500), January 1, 2002 (DAX, FTSE 100, and Nikkei 225), or March 1, 2011 (CBOE
Brazil ETF) to June 28, 2024, with maturities between one month and 30 years. Robust standard errors,
computed using numerical derivatives, are reported in parentheses. P-values (p) are indicated as follows: *
p<0.10, ** p<0.05, *** p<0.01. The table also report the mean and standard deviations of the
estimated level, slope, and curvature factors as of June 28, 2024 ({IT,,STU C_',} and
{sd(L;), sd(S;),sd(C;)}). These factor time series are estimated by regressing the implied volatility data onto
the factor loadings given the estimated decay parameter, for each day in the sample

changes in p;,(t +1M): log + &;¢41. The data series are at the daily frequency

) (ii) (iii) (iv) )

DAX FTSE 100 Nikkei 225 BOVESPA S&P 500
Ai 3.577°" 3.474™ 5.647° 5.225™ 1.471°*

(0.000) (0.047) (0.011) (0.098) (0.000)
Bi 0.078™" 0.072™" 0.060™"" 0.131°" 0.083™"

(0.002) (0.003) (0.002) (0.011) (0.002)
L, 0.228 0.205 0.209 0.262 0.254
S, -0.031 -0.043 -0.003 -0.023 -0.089
C, -0.061 -0.087 -0.029 -0.045 -0.089
sd(L;) 0.036 0.038 0.024 0.023 0.026
sd(S;) 0.068 0.061 0.062 0.076 0.067
sd(C;) 0.063 0.069 0.054 0.082 0.081

D. Scenario Narrative Generation Tool

As discussed in Section B.1, the Board uses supervisory experience and expertise,
including forward-looking expert judgment and statistical analysis of historical data in the
“scenario narrative” stage of the scenario design process. This section describes one of the tools

used to generate scenario narratives based on statistical analysis.”” This tool provides a set of

7 Other tools are described in Section B.ii.1.
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scenarios based on past firm vulnerabilities and historical co-movements of key risk factors
across various asset classes during stressed times in history. The Board may use this approach to
generate a starting point for specifying scenario narratives. This approach suggests scenario
narratives based on past stressful events. These past stressed times are identified based on firm
vulnerabilities from FR Y-14Q submission data following the approach outlined in
Abdymomunov, Duan, Hansen, and Misirli (2024, Section 3.4).3° The output of this analysis is a
set of shock values to representative risk factors, which include but may not be limited to
primary risk factors. This output constitutes the basis for the formulation of scenario narratives.
The shock values may, however, be adjusted further to account for emerging risks not captured
by historical experience, as described in Section B.ii.1.

i.  Description and Rationale

The approach has five parts: (i) identification of material risk factors to reduce the
computational burden of analysis of the impact on profits and losses (P&L); (ii) hypothetical
scenario generation using the historical simulation of material risk factors; (iii) selection of tail-
loss scenarios that can have large impacts across many historical positions and all firms included
in the global market shock component of stress testing; (iv) identification of similarities between
tail-loss scenarios using statistical techniques; and (v) evaluation of these tail-loss scenarios by
the Board and development of scenario narratives. This section describes these stages in detail.

Step (1): The first step of the analysis involves identifying risk factors that are deemed
material for the P&L impact analysis. These material risk factors are identified for each asset

class separately. For operational feasibility, the P&L impact of each risk factor in an asset class

80 See Abdymomunov, A., Z. Duan, A. L. Hansen, and E. U. Misirli (2024): Designing Market Shock Scenarios,
Federal Reserve Bank of Richmond Working Paper Series, WP 24-17.
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is estimated using firm-specific P&L sensitivities and standardized shock values, such as parallel
shifts in yield curve of £200 basis points or £20 percent changes in spot exchange rates. While
these standardized shocks are arbitrarily chosen, they are sufficiently severe to approximate the
relative contributions of each individual risk factor to the total P&L of all firms. This method
offers a first-order approximation of risk factors’ relative P&L impact contributions under stress.
The risk factors are ranked according to the size of their P&L impact and gradually included in
the set of material risk factors until cumulative P&L reaches a materiality threshold that reflects
the balance between risk coverage and efficiency.®!

Step (i1): Next, shock values for the material risk factors are simulated jointly using
historical simulation over a long sample that includes periods of major financial crises. Given a
calibration horizon of & months, the historical simulation uses A-month non-overlapping data or
rolling-windows of h-month changes using daily data. Simulated shock values that are
unsuitable for current levels of the risk factors, in the sense that they result in unprecedented
values, are filtered out. For instance, historical realizations of the U.S. Treasury bond yield
shocks that make post-shock rate levels negative are excluded from the simulated shocks. The
simulated material risk factor shocks that pass this soundness test form the distribution of
generated scenarios.

Step (iii): The third step selects scenarios from the set of historically simulated scenarios
that have tail-loss impacts (i.e. large impacts across many historical positions and across all firms
included in the global market shock component of stress testing). P&L distributions are

constructed for each asset class, firm, and period for which firm-specific P&L sensitivities are

81 In an application to interest rates, Abdymomunov, Duan, Hansen, and Misirli (2024, Section 3.4) show that a
materiality threshold of 70 percent identifies 12 interest rate curves. Increasing interest rate risk capture to 80
percent involves expanding the number of curves from 12 to 20; that is, the computational cost is large relative to
the gain in the risk capture.
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available. This granularity of distributions ensures that (i) the model investigates scenario
variation in less material asset classes; (i) firms with small dollar exposures are included in
scenario selection; and (iii) the model investigates the impact of future changes in firms’ trading
book portfolios, assuming that historical P&L sensitivities capture such potential changes in
portfolios. Tail-loss scenarios are defined as those that result in losses below the first percentile
of each firm’s P&L distributions pooled across time and firm observations. The resulting set of
scenarios covers vulnerabilities that are idiosyncratic for each firm or systematic for all firms.

Step (iv): Due to the abundance of sensitivity data across firms and firm submissions, the
set of tail-loss scenarios may be large, and some of the scenarios may be similar. Hence, further
reduction in the number of tail scenarios may be obtained by grouping similar scenarios and
identifying representative scenarios. K-means cluster analysis as proposed by MacQueen (1967)
is applied for this purpose.®? This statistical method partitions observations into clusters to
minimize the within-cluster variances. Given these clusters, a representative scenario for each
cluster is selected to ensure the tail losses scenarios are captured across firms.

Step (v): Finally, the representative scenarios are evaluated and used to form scenario
narratives. The set of representative scenarios shows past firm vulnerabilities; hence, they can
indicate potential risks and directions for material risk factors. In the rates, commodities, and
foreign exchange asset classes, for example, representative scenarios offer different directional
risks, such as interest rates going up versus down, commodity prices going up versus down, and

U.S. dollar appreciation versus depreciation against major currencies. These scenarios become a

82 See MacQueen, J. (1967): Some Methods for Classification and Analysis of Multivariate Observations,
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297.
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reference point for evaluating emerging risks and developing scenario narratives that
encompasses past firm vulnerabilities.

ii.  Assumptions and Limitations

The approach assumes that the historical firm exposure data contains information on
future risks. However, future distributions of exposures may identify different scenario
narratives than suggested by the approach given past data. Similarly, the approach also assumes
that historical simulation of risk factors represents potential future risks. The Board addresses
these limitations by using the scenario design narrative approach in combination with expert
judgment, as discussed in Section B.ii.1.

In step (ii), P&L impact is approximated using standardized shock values such as a
parallel shift in the yield curve. This approximation ignores non-parallel shifts in the curve, such
as a yield curve steepening. The standardized shock values simplify the evaluation of P&L
impact. As the approximated P&L impact is only used to identify material risk factors, and not
for generating final results, the Board considers this simplification reasonable.

In step (iv) of the approach, the set of tail-loss scenarios are reduced using cluster
analysis. While cluster analysis offers a statistical approach to group similar scenarios, it may
overlook certain risks that only show up in a single period or for a single firm. To mitigate this
risk, the Board compares the P&L impact of the final set of scenarios with the P&L impact of all
tail-loss scenarios.

E. Scenario Design Process Limitations and Alternatives

This section discusses limitations and alternatives related to the overall scenario design

process at a broad level. Limitations and alternatives related to the specific modeling choices are

addressed for each modeling component throughout Sections C and 0. The main limitations to
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the overall scenario design process include: (1) the instantaneous nature of the global market
shock; (2) limitations related to the choice of horizons over which scenario shocks are calibrated;
and (3) limitations imposed by the global market shock template. This section elaborates on
these limitations and discusses potential alternatives. While the Board acknowledges that the
approach to the global market shock scenario design involves limitations, the Board has
considered its resources and overarching policies to arrive at a sensible, yet feasible, design
process.

i.  Instantaneous vs. Dynamic Global Market Shocks

The global market shock scenario assumes that firms cannot change their position over
asset-specific liquidity horizons. This assumption is implemented as if shocks, which are
calibrated over assumed shock liquidity horizons, occur instantaneously. This design choice is
motivated by the simplicity of implementation for firms in measuring shock impacts, and by the
comparability of market losses across firms by avoiding the need to make assumptions regarding
exposure dynamics during shock horizons. However, this choice ignores potential changes in
trading positions due to the expiration of derivative contracts or trading risk management
strategies. For example, an instantaneous global market shock scenario may result in unrealistic
profits and losses if an instantaneous shock, which is calibrated to a one-month horizon, is
applied to a position that will expire in 10 days.

The alternative to the instantaneous global market shock would be to dynamically model
shocks through multiple time periods and assume that positions could change over that period.
In this alternative, the Board would provide a common, quantitative method for deriving

dynamic shocks. Firms would be required to apply appropriate horizon shocks to each position
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in their trading book. Using this alternative, the Board would mitigate the potential problem of
implausible trading gains or losses from longer horizon shocks to short-dated positions.

The alternative would require firms to scale a base market shock into a position-based
shock according to the remaining contractual term of each trade, so that firms could recognize
the short-dated nature of their positions. This could, e.g., be implemented by scaling shocks
using a square root of time rule. As a result, this alternative would also require changes to FR Y-
14Q instructions and to firms’ models so that they could estimate their profits and losses. Since
the Board does not have the profits and losses estimated under the dynamic approach, the impact
of this approach is unknown. While this alternative could resolve potential problems of
implausible trading gains or losses, it has drawbacks. It adds implementation complexity and
reduces comparability across firms due to the differences in firms’ assumption on position
dynamics. Since each firm would use its own adjustments to the market shocks for different
contractual terms according to its firm-specific exposures, such adjustments could be
independent of one another across firms. Under these circumstances, the Board would not be
able to ensure uniformity in evaluating these adjustments.

ii.  Calibration Horizon Granularity

The global market shock framework uses calibration horizons of one month for liquid
asset classes and of three months for illiquid asset classes. These horizon choices are within the
one-quarter horizon used for global market shock loss recognition in the stress capital buffer
projections.

The horizons over which global market shock values are calibrated are determined
separately for each asset class, but risk factors within each asset class are calibrated over the

same horizon. Although the set horizons follow FRTB closely, there are differences arising from
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the fact that the FRTB determines horizons at a more granular level that allows for different
horizons within each asset class. For example, the FRTB differentiates shock liquidity horizons
to equity risk factors between two weeks and three months and credit risk factors between one
and six months. In contrast, the global market scenario framework assigns a one-month liquidity
horizon for all equity risk factors and a three-month horizon for all credit risk factors.

Allowing for different horizons within asset classes would necessitate a substantial
change to the existing model structure and require additional layers of complexity that may
outweigh the benefits and could conflict with the Board’s stress test principle of simplicity. If
undertaken, further alignment with FRTB would create additional burden for the Board due to
the creation of new risk factor categories and the changes to the modeling framework. Firms
would also be affected by these changes, as updates to Y 14-Q instructions and firms’ modeling
methods would be needed.

1.  Missing Risks and Global Market Shock Scenario Simplification

The global market shock template covers most of the exposures to which firms have
trading and counterparty credit vulnerabilities. However, the template is not granular enough to
differentiate shocks to certain risk factors and to capture basis risks. For example, all U.S. equity
spot risk factors are represented by a single shock to S&P 500 index. This practice may miss
basis risk that arises from different shocks to concentrated positions in individual stocks or in
industry sectors. To address this issue, the Board could add additional risk factors that would
capture material basis and concentration risks that the current template does not.

At the same time, the global market shock template includes many risk factors, some of
which may not improve the risk capture of the global market shock. The Board is therefore

proposing to simplify the global market shock template, as described in detail below.
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The immaterial risk factors were introduced as part of the original global market shock
template, but over time risk profiles changed, and the Board has confirmed their limited risk
capture in recent stress tests. The Board continued to publish these immaterial risk factors so
that firms can easily use the original global market shock template in their operational systems.
Yet, modeling these risk factors is burdensome and resource consuming for the Board because it
involves maintaining additional data sets and models and performing additional qualitive
assurance checks.

To align with the principle of simplicity and overcome the additional burden, the Board is
proposing to substantially reduce the number of disclosed risk factors in the template, including
relative shocks, and to increase the use of mapping, as described on p. 46, for non-disclosed risk
factors. The Board would provide instructions for how this reduced set of shocks maps to most
of the risk factor shocks contained in the original global market shock template. For example, in
equity, the original template differentiated shocks for 23 advanced economy regions along with a
shock for all “other cross-country indices” and “other advanced economies.” In the simplified
template, the number of differentiated shocks would be smaller, and the “other” categories would
cover a broader set of risk factors. For volatility term structures, the simplified template may
differentiate term structure shocks up to a tenor of three years, providing a single shock for
tenors greater than or equal to three years for each term structure. All risk factors are therefore
still captured under the simplified framework. The Board seeks public comments on its
simplification approach.

Under this simplification approach, the Board would consider the materiality of the risk
factors measured by P&L from firms’ trading activity. Specifically, the Board would ensure that

material risk factors are maintained in the global market shock template. The Board would also
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consider the importance of the risk factors for characterizing scenario narratives. The simplified
template would therefore maintain risk factors that are categorized as primary and secondary.
One example of such risk factors is the gold spot price shock, which is an indicator of market
stress that the Board often cites in the scenario narrative, but for which firm exposures have
historically been relatively small. Another example of a risk factor with lower materiality (in
terms of aggregate P&L) that is important to characterize scenario narratives is the exchange rate
between U.S. dollar and Japanese Yen.

Another consideration is maintaining consistency across asset classes. In this regard,
where possible, the Board would generate shocks for the same set of countries, regions, and tenor
points across different asset classes. For example, the template would include shock values for
the same set of tenors for term structures in the equity, FX, and commodity asset classes. Such
consistency would simplify risk factor comparison across different asset classes and help the
Board to communicate its scenario narratives more effectively to the public. Finally, the Board
would consider data quality and the availability of data such that the template maintains risk
factors for which high-quality data is available, unless these risk factors are material, important
for the scenario, or serve to ensure consistency across asset classes. For example, high-quality
data may not be available for thinly traded securities. In addition, for some assets, such as
certain securitized products, data may not be available at all, as these products have not been
actively traded since the Global Financial Crisis.

Although the Board would provide instructions for all risk factors under the simplified
approach, the simplification may involve a loss of risk capture by not differentiating all risk
factor shocks. The Board has evaluated the impact of simplification on P&L of firms’ trading

activities, finding that the loss impact is immaterial.
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An important consideration of simplification is the operational burden for firms to adjust
their production processes to the changed template. To mitigate this burden and give firms
sufficient time to operationalize the change, the Board would publish the undisclosed shocks for
the 2026 stress test scenario in the same file format as was done for the 2025 stress test and map
the undisclosed risk factors to the disclosed ones. In the 2026 stress test scenarios, there are
approximately 2,300 disclosed risk factors, which are published in a separate template for ease of
disposition among the 2026 stress test scenario materials. The Board proposed to publish only
the disclosed risk factors used in future stress test scenarios, in the shorter-form template, for the

2027 stress test and beyond.

www.federalreserve.gov



