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This document summarizes the models and the processes of the global market shock 

(GMS) component of the severely adverse scenario that the Board of Governors of the Federal 

Reserve System (Board) used to produce certain values in the scenarios for the 2026 Supervisory 

Stress Test.  There were no revisions to this document from the version proposed in October 

2025 other than typographical fixes.1  Documentation on the other final and proposed models 

associated with the Board’s 2026 Supervisory Stress Test is available at the following link: 

https://www.federalreserve.gov/supervisionreg/dfa-stress-tests-2026.htm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 See 90 FR 51762 (November 18, 2025).  This proposal was posted to the Board’s public website on October 24, 

2025.  Board (2025), “Federal Reserve Board requests comment on proposals to enhance the transparency and 

public accountability of its annual stress test,” press release, October 24, 2025, 

https://www.federalreserve.gov/newsevents/pressreleases/bcreg20251024a.htm. 
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A. Statement of Purpose 

The global market shock component for the severely adverse scenario is a set of 

hypothetical shocks to a large set of financial risk factors, such as stock market indices, 

currencies, commodities, interest rates, and credit securities, reflecting general financial market 

distress and heightened uncertainty.  A firm subject to the annual Dodd-Frank Act supervisory 

stress tests that has significant trading activity must incorporate the global market shock into the 

severely adverse scenario.2  In addition, certain large and highly interconnected firms must apply 

the same global market shock to project losses under the counterparty default scenario 

component.  The losses associated with the global market shock are recognized in the first 

quarter of the scenario horizon, and no changes to losses or gains are assumed in subsequent 

quarters of the scenario.  The global market shock is applied to positions held by the firms on a 

given as-of date, which was, for example, October 11, 2024, for the 2025 stress test cycle.3  The 

stress test scenarios should not be regarded as forecasts; rather, they are hypothetical paths of 

economic and financial variables used to assess the strength and resilience of the companies’ 

capital in various economic and financial environments.  

The design and specification of the global market shock component differ from the 

design and specification of the severely adverse macroeconomic scenario for several reasons.  

First, informed by U.S. Generally Accepted Accounting Principles (U.S. GAAP), profits and 

losses from trading and counterparty credit positions are measured in mark-to-market accounting 

 
2 Firms that are subject to the global market shock are those with aggregate trading assets and liabilities of $50 

billion or more, or with aggregate trading assets and liabilities equal to 10 percent or more of total consolidated 

assets; and are not a Category IV firm under the Board’s tailoring framework.  See 12 C.F.R. § 238.143(b)(2)(i); 12 

C.F.R. § 252.54(b)(2)(i). 

3 A firm may use data as of the date that corresponds to its weekly internal risk reporting cycle as long as it falls 

during the business week of the as-of date for the global market shock (e.g., October 7–11, 2024 for the 2025 stress 

test). 
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terms in the global market shock, while revenues and losses from traditional banking activities, 

as generated under macroeconomic scenarios, are generally measured using the accrual 

accounting method.  Another key difference between the global market shock and the severely 

adverse macroeconomic scenario is the timing of loss recognition.  The global market shock has 

an impact on losses in the first quarter of the severely adverse scenario’s projection horizon, 

whereas the severely adverse macroeconomic scenario moves over a nine-quarter projection 

horizon.  This timing is based on a scenario assumption that market dislocations can happen 

rapidly and unpredictably at any time during the scenario horizon.  Applying the global market 

shock in the first quarter of the stress test projection horizon ensures that potential losses from 

trading and counterparty exposures are incorporated into banks’ capital ratios in each quarter of 

the severely adverse scenario.  In addition, the severely adverse macroeconomic scenario 

currently has an as-of date of December 31 of each year, whereas the global market shock as-of 

date changes every year and does not necessarily coincide with the year-end.4  The global market 

shock component is referred to as “scenario” or “global market shock scenario” hereafter. 

As discussed in greater detail in Section B below, the global market shock scenario 

comprises a large set of financial risk factors.  An exhaustive list is provided in the global market 

shock template.5  The risk factors of the global market shock scenario include, but are not limited 

to: 

 
4 The Board has proposed changes to the global market shock as-of date and other aspects of the supervisory stress 

test in the Board’s Enhanced Transparency and Public Accountability proposal, published in the fall of 2025.   

5 The template is available from the website of the Board.  For example, for the 2025 stress test: 

https://www.federalreserve.gov/supervisionreg/dfa-stress-tests-2025.htm. 
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• Public equity returns from key advanced economies as well as from developing and 

emerging market economies, along with selected points along term structures of equity 

option-implied volatilities; 

• Exchange rates of foreign currencies, along with selected points along term structures of 

foreign exchange option-implied volatilities; 

• Government yields at selected maturities (e.g., 10-year U.S. Treasuries), swap rates, and 

other types of interest rates for key advanced economies as well as from developing and 

emerging market economies; 

• Implied volatilities on interest rate options for selected maturities and expiration dates, 

which are key inputs to the pricing of interest rate derivatives; 

• Futures prices at various expiration dates for commodity products such as energy, oil, 

metals, and agricultural products; and 

• Credit spreads or prices for selected credit-sensitive products, including corporate bonds, 

credit default swaps (CDS), securitized products, sovereign debt, and municipal bonds. 

 

B. Overview of Scenario Design Process 

The Board generates shock values for all exposures in the global market shock template.  

Shock values represent the magnitudes of changes to the financial risk factors in the global 

market shock template, and they reflect the severity of market stress that these risk factors 

experience in the scenario.  Table B1 provides an overview of the shock definitions by asset class 

as well as the horizons over which the shocks are calibrated, as discussed further in the following 

section.  Throughout this document, the terms “financial risk factor shocks” and “shock values” 

are used interchangeably.  
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Table B1 - Overview of Shock Values Generated by the Global Market Shock Scenario Design 

Framework 

 

Asset class Spot/futures curve shocks 
Option-implied volatility 

shocks 
Horizon  

Agencies Option adjusted spread changes to U.S. 

residential agency products, U.S. 

commercial agency products, and non-

U.S. agency products across various 

ratings. 

N/A 1 month 

Commodities Arithmetic returns to spot prices and 

futures contract prices across maturities 

for commodities. 

Changes to implied 

volatilities of commodities. 

1 month 

Foreign 

exchange 

rates 

Arithmetic returns to spot exchange rates 

of various currencies against the U.S. 

dollar.  Cross-currency spot exchange 

rates.   

Changes in implied 

volatility of foreign 

exchange options across 

various maturities. 

1 month 

Interest rates Absolute changes to term structures of 

government bond yields and swap rates 

for various countries.  Absolute 

changes in inflation, cross-currency 

versus the U.S. dollar basis, and EUR 

tenor basis risk.   

Changes to interest rate 

implied volatilities across 

various swaption maturities. 

1 month 

Public equity Arithmetic returns to public equity 

across regions (markets). 

Changes in implied 

volatilities of public equity 

options across various 

maturities. 

1 month 

Public equity 

dividends 

Relative yield shocks on dividend 

derivatives (e.g., dividend swaps and 

dividend futures) across various regions 

(markets) and tenors. 

N/A 1 month 

Sovereign 

credit 

Changes to five-year credit default swap 

spreads for various countries. 

N/A 1 month 

Corporate 

credit 

Spread changes to corporate bonds, 

covered bonds, indices, index tranches, 

and index options across credit ratings. 

 

N/A 3 months 

Municipal 

credit 

Spread changes to municipal bond 

indices and other municipal credit 

products across credit ratings. 

N/A 3 months 

Other fair 

value assets 

Arithmetic returns to other securities 

held under fair value accounting rules.  

Examples include illiquid fair value 

securities, which cannot be grouped into 

N/A 3 months 
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Asset class Spot/futures curve shocks 
Option-implied volatility 

shocks 
Horizon  

another asset class, such as public 

welfare investments covering housing 

credit, tax credit, and energy 

investments. 

Securitized 

products 

Market value haircuts (price declines), 

expressed in percentage terms, to value-

weighted portfolios of mortgage-backed 

securities and other asset-backed 

securities (ABS).   

N/A  3 months  

 

i. Risk Factor Liquidity Horizons 

Financial risk factor shocks are calibrated based on assumed time horizons that reflect 

several scenario design considerations.  One consideration is the liquidity characteristics of the 

different asset classes (as listed in Table B1) that constitute risk factors.  More specifically, the 

calibration horizons reflect the variation in speed at which banks could reasonably close out, or 

effectively hedge, the associated risk exposures in the event of market stress.  The horizons are 

generally longer than the typical times needed to liquidate exposures under normal conditions 

because they are designed to capture the unpredictable liquidity conditions that prevail in times 

of stress.6  Another consideration is maintaining consistency between the assumed time horizons 

used to calibrate risk factor shocks and the timeline for attributing the losses stemming from 

these risk factors.  Specifically, losses associated with the global market shock component are 

attributed to one quarter of the stress test horizon, which implies an upper bound of three months 

for calibrating the shocks.  

 
6 The liquidity of previously well-functioning financial markets can undergo abrupt changes in times of financial 

stress.  For example, prior to the Global Financial Crisis, AAA-rated private-label residential mortgage backed 

securities (RMBS) would likely have been considered highly liquid, but their liquidity deteriorated drastically during 

the crisis period. 
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Given these considerations, the shock liquidity horizons are chosen to be broadly 

consistent with the proposed standards in the Fundamental Review of the Trading Book (FRTB).7 

The horizons in the FRTB are specified based on recommendations from consultations with the 

financial industry and its regulators.  Therefore, they are considered a reasonable benchmark for 

defining the shock horizons used in the global market shock.  

The liquidity horizons used in the market shock scenarios are not perfectly matched with 

the FRTB liquidity horizons due to granularity differences between the FRTB standards and the 

global market shock template.  The FRTB specifies horizons at a more granular level, often using 

different horizons within each asset class.  For example, the FRTB specifies sovereign risk factor 

horizons by credit rating.  In contrast, the global market shock template specifies sovereign 

shocks by country to capture country-specific risks not reflected by credit ratings.  Moreover, the 

Board uses the same liquidity horizon for all risk factors within each asset class, whereas the 

FRTB allows for different horizons within asset classes.  Given these differences, the global 

market shock scenario aims at aligning with the horizons specified by the FRTB by using a 

weighted average of the FRTB horizons within each asset class.  The weights are determined 

using aggregate firm exposures.8  For example, FRTB horizons for equity risk factors vary 

between ten and 60 business days, and the global market shock horizon for this asset class is 

assumed to be four weeks.  Since the Board imposes an upper bound on global market shock 

horizons of one quarter, there are cases where the range of FRTB horizons is longer than the 

global market shock horizon.  For example, FRTB horizons for corporate credit risk factors vary 

 
7 The FRTB standards are published as part of the “Minimum capital requirements for market risk” published by the 

Bank of International Settlements (2019). 

8 Exposures are taken from FR Y-14Q, schedule F. 
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between 60 and 120 business days, but the Board uses a horizon of three months for corporate 

credit. 

ii. Scenario Design Process 

The process for designing the global market shock consists of three stages: 1) the 

development of scenario narratives, 2) scenario generation, and 3) scenario selection.  Three 

different parties with relevant decision authority vet this process before scenarios are finalized.  

The parties involved are market risk functional leads, an oversight committee of stress testing 

program leaders, and division directors for Supervision & Regulation and Financial Stability at 

the Board. 

In the first stage, scenario narratives, which are thematic summaries of potential episodes 

of market distress that are summarized by a few risk factors, are developed for further 

consideration.  These risk factors, denoted as primary risk factors, broadly characterize market 

conditions under a chosen narrative.  After scenario narratives and their primary risk factors are 

developed, they are first reviewed by market risk functional leads.  After this review is 

completed, narratives and primary risk factors are presented to the oversight committee, which 

decides on the candidate scenario choices of each stress testing cycle. 

The second stage uses data-driven models to generate the full set of published global 

market shocks conditional on the primary risk factor shocks for each narrative.  The models are 

based on the historical co-movements between risk factors under stressed market conditions.  

The output is a set of candidate scenarios, each consisting of a narrative and a complete set of 

risk factor shocks that make up the global market shock.  This step emphasizes the process of 

expanding the primary risk factor shocks out to the full set of shocks.  As in the first stage of the 
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scenario design process, the oversight committee reviews and signs off on candidate scenario 

choices before they are presented to division directors for further evaluation.  

In the third stage, a few scenarios are selected from among all the candidate scenarios for 

final global market shock scenario consideration by the Board.  After reviewing all presentations 

and perspectives of stress test program leadership, the Director of Supervision & Regulation and 

the Director of Financial Stability decide on the final global market shock with the concurrence 

of the Chair of the Committee on Bank Supervision.  The following three subsections (B.ii.1-

B.ii.3) describe these stages in further detail.  

1. Scenario Narratives 

The first stage of global market shock scenario design consists of drafting several 

narratives of potential episodes of market distress.  The Board creates multiple scenario 

narratives at this stage to encompass different types of market stresses.  A scenario narrative 

consists of a qualitative description along with shock values for a few key risk factors that 

characterize different financial market conditions.  These risk factors, denoted primary risk 

factors, represent the following five financial markets: equities, credit, interest rates, commodity, 

and foreign exchange rates.  The selected primary risk factors are the S&P 500 equity market 

index, Moody’s Baa-Aaa credit spread, the level and slope of U.S. Treasury interest rates, energy 

and metal commodity indices, and the U.S. dollar-to-Euro exchange rate.  This set of primary 

risk factors can be augmented with additional risk factors if a particular scenario narrative 

requires additional risk aspects to provide a full characterization.  For instance, a scenario 

narrative focusing on financial and economic conditions in Europe may require more Europe-

specific risk factors, such as European stock market indices. 
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The Board considers multiple sources of information for specifying scenario narratives, 

including supervisory experience and forward-looking expert judgment, as well as statistical 

analysis of historical and recent financial data.  Incorporating expert judgment in scenario design 

is a widely accepted practice by industry practitioners and in academic and regulatory literature.  

For example, the Committee on the Global Financial System (2005) classifies stress scenarios 

into historical and hypothetical scenarios, where the latter involves considerable judgment.9  

Aikman et al. (2024), Breuer et al. (2018), and Alfaro and Drehmann (2009) also emphasize the 

role of expert insights in scenario design.10 

Expert judgment is based on a screening of emerging risks and current market conditions 

identified from various sources including, but not limited to, financial stability reports from 

government agencies, supervisory information, and internal and external assessments of potential 

sources of distress, such as geopolitical, economic, and financial market events.  

The Board uses statistical analysis of historical data to specify primary risk factor shocks.  

One analysis uses percentiles of historical data, where the percentiles reflect the severity of stress 

for each primary risk factor.  For example, the narrative may categorize shocks as “mild,” 

“moderate,” “large,” “severe,” or “unprecedented.”  In determining a given cycle’s global market 

shock component, the Board may consider unprecedented shocks because times of stress can 

feature events that have not been observed previously.  These qualitative characteristics are 

mapped to quantitative shocks as follows: 

 
9 See Committee on the Global Financial System (2005): Stress Testing at Major Financial Institutions: Survey 

Results and Practice. 

10 See Aikman, D., R. Angotti, and K. Budnik (2024): Stress Testing with Multiple Scenarios: A Tale on Tails and 

Reverse Test Scenarios, European Central Bank Working Paper, No 2941.; Breuer, T., M. Jandačka , J. Mencía, and 

M. Summer (2012): A Systematic Approach to Multi-Period Stress Testing of Portfolio Credit Risk, Journal of 

Banking and Finance, 36(2), 332–340.; Alfaro, R., Drehmann, M., 2009. Macro Stress Tests and Crises: What Can 

We Learn?  In: BIS Quarterly Review.  Bank of International Settlements, pp. 29–41. 
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• “Mild” shocks fall within the 15th (including) and 85th (including) percentiles of the 

historical realizations of the primary risk factors. 

• “Moderate” shocks fall within the 5th (including) and 15th (less than) percentiles or within 

the 85th (greater than) and 95th (including) percentiles. 

• “Large” shocks fall within the 1st (including) and 5th (less than) percentiles or within the 

95th (greater than) and 99th (including) percentiles. 

• “Severe” shocks fall within the historical minimum (including) and the 1st (less than) 

percentile or within the 99th (greater than) percentile and the historical maximum 

(including). 

• “Unprecedented” shocks are greater in magnitude than the historical maximum or lower 

than the historical minimum. 

The above mapping is the Board’s general guidance for standardizing the qualitative 

severity of the scenario narrative rather than using a statistical model.  These percentiles are 

applied to historical primary risk factor shock values computed over h-week windows of data, 

where h is the time horizon over which the shock is calibrated.  The final adjustment may 

combine the shock values from these percentiles with adjustments from other considerations, 

such as the current levels of risk factors.  For example, large negative shocks to interest rates 

could be avoided during times when interest rates are near the zero lower bound.  

The shock values of primary risk factors may also be chosen to target specific secondary 

risk factors that are deemed particularly important for a given scenario narrative.  For example, 

the shock value for the energy commodity index may be chosen to target a specific shock value 

for a shock to the price of West Texas Intermediate crude oil, which is a secondary risk factor. 
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Another analysis used to help inform the production of narratives considers historical 

shocks in combination with past firm risk exposures.  For this exercise, the Board generates a 

large number of scenarios using historical simulation and estimates the trading gains and losses 

associated with them using firm exposures from previous quarterly FR Y-14Q submissions.11  

Using this approach, stressful historical shocks are defined by those scenarios that result in tail 

losses.  This analysis generates a set of historical stressful episodes from which historically 

observed shock values to primary risk factors can be collected.  This method is described in 

further detail in Section D. 

Percentiles of historical data and the historical simulation method offer two alternative 

sets of primary risk factors that the Board can choose from to describe the narrative.  The Board 

reviews both sets collectively and selects the primary risk factors that are most appropriate for 

the scenario narrative based on emerging risks and current market conditions.  Finally, the Board 

checks primary shock calibrations for consistency using historical correlations to ensure that the 

final combination of shocks representing the key aspects of a given scenario remains plausible 

when considered jointly. 

2. Scenario Generation 

In the second stage of the scenario design, scenario shocks are quantified for all other risk 

factors in the published global market shock scenario, including the secondary risk factors.  For 

this purpose, as a starting point, the Board uses a modeling approach that produces candidate 

shocks for all risk factors conditional on the scenario shocks to the primary risk factors.  

 
11 FR Y-14Q reporting forms and instructions are available at the website of the Board: 

https://www.federalreserve.gov/apps/reportingforms/Report/Index/FR_Y-14Q. 
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In designing the modeling approach, the Board adhered to two main objectives: (i) shocks 

should be internally consistent within each scenario (e.g., a severe shock to a security price 

should be accompanied by severe shocks to the implied volatility of options written on that 

security); and (ii) models should be flexible so as to incorporate emerging risks and targeted 

narratives in the global market shock (e.g., the set of primary risk factors should be flexible to 

incorporate narratives centered around risks arising outside the U.S.).  To satisfy these objectives, 

the modeling approach uses a stepwise approach to modeling shocks similar to Abdymomunov, 

Duan, Hansen, and Misirli (2024, Section 3).12  The models are designed to capture historical 

relationships between risk factors (primary, secondary, and all other), particularly between 

historical severe (tail) shock observations.  The modeling approach is described in detail in 

Section C. 

The Board evaluates the model-produced shocks and, if necessary, applies adjustments 

based on the Board’s supervisory experience and expertise.  These adjustments incorporate 

scenario narrative characteristics as well as emerging and ongoing risks highlighted in Financial 

Stability Reports and supervision reports of different agencies.  Therefore, the narrative is not 

constrained by the limited number of the primary risk factors.   

The adjustments to model output are motivated mainly by the following reasons:   

• Data issues or internal model limitation: When model outputs are deemed to not 

accurately reflect periods of historical stress or would otherwise be unreasonable due to 

data issues or model limitations, model overrides are performed to bring them in line with 

market movement expectations under stress scenarios.   

 
12 See Abdymomunov, A., Z. Duan, A. L. Hansen, and E. U. Misirli (2024): Designing Market Shock Scenarios, 

Federal Reserve Bank of Richmond Working Paper Series, WP 24-17. 
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• Current market environment: Modeled shocks are based on long term historical data and 

historical correlations.  Sometimes modeled shock outputs may be too extreme or too 

mild for current market conditions.  For example, rate shocks calibrated to past periods of 

stress under a higher interest rate environment may lead to improper outcomes if directly 

applied to an extreme low-rate environment.  In such cases, necessary adjustments to 

shock output are made in light of current market conditions.   

• Bespoke narratives: Models are calibrated to historic periods of general market stress.  

Narratives may focus on differentiated shocks to specific asset classes or regions which 

may not be captured exactly or appropriately in such past historical events.  In such cases, 

shocks are adjusted as needed to reflect the tailored scenario narrative.   

• Cross-asset class and intra-asset class consistencies: Model output shocks sometimes may 

not reflect cross-asset class correlations or may not be internally consistent within the 

asset class due to primary-risk-factor shock specifications.  As a result, the overrides are 

needed to reflect appropriate consistencies.   

Consistent with the guidelines on stress testing published by the Bank of International 

Settlements (2018), judgment applied by the Board is subjected to rigorous review and validation 

aimed at ensuring that the judgments are properly justified.13  Shocks to key risk factors, which 

include primary risk factors and potentially some secondary risk factors that are important for 

describing the narrative, are benchmarked to historical shock distributions.  If any of the key 

shock values are unprecedented (i.e., exceed historical experience), they must be highlighted in 

the Board’s internal processes, and their plausibility must be justified by the current environment 

and scenario narratives.  

 
13 Bank of International Settlements (2018): Stress Testing Principles. 
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All scenarios, including their judgment-based adjustments, are subject to independent 

quality assurance review.  These reviews aim to ensure that the financial market shocks in the 

global market shock scenario are (1) severe, but plausible; (2) correspond to the scenario 

narrative; and (3) are internally consistent; that is, shocks to different product types co-move 

according to expectations of how the stress scenario would unfold. 

3. Scenario Selection 

In the third and final stage, the Board evaluates all candidate scenarios and selects one 

scenario for the global market shock component for the severely adverse scenario.  The scenario 

selection process among candidate scenarios follows a governance process where inputs and 

feedback from various internal stakeholders are considered.  In this process, the Board also 

collects feedback on scenario narratives from other federal regulatory agencies, such as the 

Office of the Comptroller of the Currency (OCC) and the Federal Deposit Insurance Corporation 

(FDIC).  Ultimately, authority for the ultimate decision on scenario selection has been delegated 

jointly to the Directors of the Division of Supervision and Regulation and the Division of 

Financial Stability, with the concurrence of the Chair of the Committee on Bank Supervision.14 

C. Detailed Modeling Approach 

Generating financial market shock scenarios is a high-dimensional problem because there 

are thousands of potential risk factor shocks whose historical data are interrelated.  Moreover, a 

scenario should endeavor to be internally consistent; that is, the directions and magnitudes of 

specific shocks must correspond to those of other shocks within their asset class and across other 

asset classes, as based on experience during financial turmoil.  The shocks should also conform 

with the overall scenario narrative as a whole.  

 
14 12 CFR 265.7(c)(11). 
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These features present challenges for the scenario design models.  First, it is impractical 

to map scenario narratives directly to a large number of risk factors in one step.  Second, it is 

challenging to ensure the consistency and joint plausibility of different shocks (i.e., the 

reasonableness of the cooccurrence of thousands of market risk factor shocks across a diverse set 

of asset classes).  Both the modeling and the quality assurance review process of model 

outcomes increase in complexity as the number of risk factors increases.  

To address these challenges, the Board adopts the following approach.  First, the set of all 

risk factors is divided into three categories: (1) the primary risk factors, which characterize the 

scenario narratives at a very high level; (2) a subset of risk factors that specify the scenario 

narrative at a more granular level and, to the extent possible, can be described by the variation in 

the primary risk factors, called secondary risk factors; and (3) a large number of any remaining 

risk factors needed to complete the entire market shock scenario. Note that the set of remaining 

risk factors includes those that are in the global market shock template but not included in the 

sets of primary and secondary risk factors.  The introduction of the secondary risk factors allows 

the Board to specify more detailed scenario characteristics than with the primary risk factors 

alone, while still maintaining a manageable number of risk factors.  This approach gives the 

Board flexibility to design scenarios that target special vulnerabilities in key secondary risk 

factors while maintaining the model-driven consistency among all risk factors.  While the Board 

seeks to choose secondary risk factors that can be modeled using the primary risk factors, there 

are cases where risk factors that are unrelated to the primary risk factors are necessary to 

describe the details of the scenario narrative.  In those cases, the Board uses simpler methods 

such as mappings, multipliers, and percentile methods, as described further in Section C.iii.1.d.  
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As in Abdymomunov, Duan, Hansen, and Misirli (2024), the modeling approach links 

these three sets of risk factors in two steps.15  In the first step, the secondary risk factors are 

modeled conditional on primary risk factors.  These models generate shock values to secondary 

risk factors given the primary risk factor shocks determined from the scenario narratives.  In the 

second step, any remaining risk factors needed are modeled conditional on the primary and 

secondary risk factors. 

i. Choice of Primary and Secondary Risk Factors 

As noted above, the risk factors of a financial market scenario are grouped into three 

categories: (1) primary risk factors that characterize broad market conditions, (2) secondary risk 

factors that describe a scenario narrative, and (3) the remaining risk factors that give a 

comprehensive description of a market scenario.  The modeling approach proceeds stepwise to 

link these three sets of risk factors to one another.  This section discusses the choice of primary 

and secondary risk factors.  

1. Description and Rationale 

The Board chooses the primary risk factors in accordance with three properties.  

First, primary risk factors should characterize a large part of the variation in asset prices across 

five broad asset classes; namely, public equities, traded credit, interest rates, exchange rates, and 

commodities.  This property helps the Board to form economically and statistically significant 

relationships between the primary risk factors and other risk factors in their respective asset 

classes.  

 
15 See Abdymomunov, A., Z. Duan, A. L. Hansen, and E. U. Misirli (2024): Designing Market Shock Scenarios, 

Federal Reserve Bank of Richmond Working Paper Series, WP 24-17. 
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Second, primary risk factors should have available long time series of observations that 

cover major historical economic and financial crises, thereby capturing tail events that can be 

used for scenario analysis, such as with historical simulation.  This property helps the Board to 

select and justify the magnitudes of risk factors from historical experience and to offer scenario 

options that differ in shock severity.  

Third, primary risk factors should be observed variables with clear economic 

interpretation, which market participants would know and easily associate with a scenario 

narrative, as opposed to latent factors described indirectly by statistical methods from observed 

variables (e.g., principal component analysis).  This property helps the Board to focus on the 

consistency of a small set of primary risk factors, to ensure the coherence of the scenario 

narrative and to communicate it to market participants. 

Review of the available literature suggests that U.S. public equity returns, some measure 

of prevailing credit spreads, and a government bond term spread are among the key factors in 

explaining business cycle variation.  For example, Diebold and Yilmaz (2009) show that U.S. 

public stock market returns spill over to global stock markets; Beaudry and Portier (2006) show 

that public stock price movements along with total factor productivity shocks jointly explain 

business cycle fluctuations; Jermann and Quadrini (2012) emphasize credit conditions as 

important contributors to economic downturns; and Estrella and Hardouvelis (1991) show that 

the term spread has predictive power for future real activity.16  The literature also suggests that 

interest rate risk along the yield curve cannot be fully captured by a single factor; see, e.g., 

 
16 See Diebold, F. X., and K. Yilmaz (2009): Measuring Financial Asset Return and Volatility Spillovers, With 

Application to Global Equity Markets, Economic Journal, 119, 158–171.; Beaudry, P., and F. Portier (2006): Stock 

Prices, News, and Economic Fluctuations, American Economic Review, 96(4), 1293–1307.; Jermann, U., and V. 

Quadrini (2012): Macroeconomic Effects of Financial Shocks, American Economic Review, 1, 238–271.; Estrella, 

A., and G. Hardouvelis (1991): The Term Structure as a Predictor of Real Economic Activity, Journal of Finance, 

46(2), 555–576. 
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Litterman and Scheinkman (1991).17  Given these observations, the scenario design framework 

employs the S&P 500 index return, Moody’s Baa-Aaa credit spread,18 the U.S. 10-year minus 

three-month Treasury term spread, and the U.S. 10-year Treasury bond yield as primary factors.  

In addition to these business cycle variables, the scenario design framework needs 

primary factors specifically related to foreign exchange rates and commodities pricing to capture 

stress within these asset classes.  The U.S. dollar-to-Euro exchange rate is central to developing 

foreign exchange shocks in scenarios based on stress within the U.S. and Europe.  Given the 

strong interactions between U.S. and European financial markets, the Board determines that this 

exchange is particularly important to define for many scenario narratives.  Therefore, the U.S. 

dollar-to-Euro exchange rate is included in the list of primary factors to represent the foreign 

exchange market.  Commodity markets cover both energy and metal products.  To describe the 

risks associated with these products, three risk factors are included in the set of primary risk 

factors: energy, gold, and “other metals”.  Gold is included separately from other metals due to 

its flight-to-quality property19 during times of turmoil.  Since the energy and metal primary 

factors are only weakly related, a primary factor for each group is needed.  Specifically, the 

framework includes the Global Price Index of Energy and the Global Price Index of Metal, 

constructed by the International Monetary Fund.  These variables are chosen because they 

describe common variation within energy- and metal-related primary factors.20  

 
17 See Litterman, R., and J. Scheinkman (1991): Common Factors Affecting Bond Returns, Journal of Fixed Income, 

1, 54–61. 

18 The Baa-Aaa spread is the difference between Moody’s Baa-rated and Aaa-rated corporate bond yields. 

19 Flight-to-quality refers to a sudden shift in investment behavior during financial turmoil in which investors sell 

their risky assets such as stocks and purchase safe assets such as gold instead.  This behavior is largely driven by 

investors’ fear in the market, which makes them seek less risk in exchange for lower profits. 

20 The energy index is a price index of fuel-based commodities including crude oil (petroleum), coal, natural gas and 

propane.  The metal index is a price index of base metals including aluminum, copper, iron ore, lead, molybdenum, 

nickel, tin, uranium and zinc.  Index values represent the benchmark prices which are representative of the global 
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Although the eight primary factors are chosen in accordance with the three properties 

listed above, it remains unlikely that all scenario narratives can be properly described using this 

small subset of risk factors.  Therefore, the secondary risk factors are introduced to provide a 

more detailed scenario narrative.  Similar to Abdymomunov, Duan, Hansen, and Misirli (2024), 

the Board selects secondary risk factors from five broad asset classes.  The secondary risk factors 

are chosen based on two principles.21  First, the set of secondary risk factors must be able to 

broadly characterize scenario narratives.  Second, the secondary risk factors must be statistically 

related to the primary risk factors, such that statistical models can be used to generate shock 

values for secondary risk factors conditional on primary risk factor shocks.  It may be necessary 

to include secondary risk factors that do not satisfy this criterion to represent a detailed scenario 

narrative with the set of secondary risk factors.  Using these principles, the set of selected 

secondary risk factors includes around 100 factors.  Examples of chosen secondary risk factors, 

including their linkages to primary risk factors, are provided in Section C.ii.  Unlike the primary 

risk factors outlined above, the set of secondary risk factors is not necessarily the same each year.  

Instead, the set of secondary risk factors is flexible and can be expanded to accommodate various 

market scenarios, as appropriate.  For example, a scenario narrative specifically based on 

financial turmoil in, say, Asia, may require additional Asian equity market indices, interest rates, 

and foreign exchange rates in the set of secondary risk factors, all of which would not be needed 

to describe, for instance, a U.S.-centered scenario.  Therefore, the set of secondary risk factors in 

Section C.ii represents a baseline that could be subject to adjustments year-over-year. 

 
market.  These prices are determined by the largest exporter of a given commodity and given in nominal U.S. 

dollars.  The time series of the indices are retrieved from the Federal Reserve Bank of St. Louis’ FRED online 

database with the following citations: Global Price of Energy Index [PNRGINDEXM] and Global Price of Metal 

Index [PMETAINDEXM]. 

21 See Abdymomunov, A., Z. Duan, A. L. Hansen, and E. U. Misirli (2024): Designing Market Shock Scenarios, 

Federal Reserve Bank of Richmond Working Paper Series, WP 24-17. 
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2. Assumptions and Limitations 

While summarizing scenario narratives by the small subset of primary risk factors is 

practical, this approach could overlook certain risks.  For example, the Board models equity 

market risk based on the S&P 500 index as a primary risk factor, but equity market risk could 

arise from, for example, European or Asian markets.  Also, even though simple and tractable 

models with straightforward interpretations are prioritized, the small number of primary risk 

factors may limit broad narratives.  The Board attempts to mitigate this possibility by 

considering primary and secondary risk factor shocks as part of the detailed narratives.  

Moreover, the Board carefully evaluates shock values applied to the larger set of secondary risk 

factors that are produced from the primary risk factors and applies adjustments to model 

outcomes if necessary to properly describe the risks in the formulated scenario narratives.  Such 

adjustments may include augmenting the set of primary risk factors with additional risk factors.  

Finally, the Board has extensive quality assurance processes in place to ensure coherence among 

all final risk factor shocks. 

ii. Modeling the Relationship Between Primary and Secondary Risk Factors 

This section explains the first part of the modeling approach, which generates secondary 

risk factors from primary risk factors using regression models. 

The Board models each secondary risk factor separately, given one or more of the primary 

risk factors.  Section C.ii.2 provides an overview of these linkages by asset class.  With a few 

exceptions, the secondary risk factors are linked to primary risk factors from the same asset class; 

e.g., public equities secondary risk factors are modeled using the S&P 500 index, which is the only 

public equity primary risk factor.  In some cases, these simple within-asset-class links are not 

sufficient for describing stressed conditions in the secondary risk factors.  For example, municipal 
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credit secondary risk factors are modeled using the credit primary risk factor (i.e., the Baa-Aaa credit 

spread).  But in some scenarios, such as during the COVID-19 pandemic, one business cycle factor is 

not sufficient to generate severe stress in the shock values to municipal credit factors.  Therefore, 

municipal credit is described using both the credit spread and the S&P 500 return.  Finally, some 

secondary risk factors are modeled based on other secondary risk factors, which may describe the 

behavior under stressed conditions better than the primary risk factors.  For example, the implied 

volatility of DAX index options is modeled using the DAX index return, which is also a secondary 

risk factor.22  

Depending on the nature of the secondary risk factor data, the Board employs one of the 

following regression frameworks: quantile regression for secondary risk factor shocks (i.e., the  

log-return23 of a risk factor or the difference of risk factor levels); quantile autoregression for 

secondary risk factor levels (e.g., index prices, interest rates, or exchange rates); ordinary 

regression for the secondary risk factor shocks; and ordinary autoregression for spreads between 

secondary risk factor levels.  

1. Model Descriptions and Rationale 

a. Quantile Regression Model 

As discussed in Section C.ii.2, most of the secondary risk factors are modeled with quantile 

regressions.  In market risk, extreme shocks tend to happen simultaneously during financial 

crises.  This behavior is captured by the quantile regression model because it expresses the 

conditional quantiles of secondary risk factors as a function of primary risk factors.  Let 𝒓𝒊,𝒕,𝒉 

denote a risk factor shock in month 𝒕, such as an equity index log return, over a horizon of h 

 
22 The DAX index is an index of 40 selected German blue chip stocks traded on the Frankfurt Stock Exchange. 

23 The h-period log return of a product i with price Pi,t is defined as 𝒓𝒊,𝒕,𝒉 = 𝐥𝐨𝐠 𝑷𝒊,𝒕 − 𝐥𝐨𝐠 𝑷𝒊,𝒕−𝒉.    
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months.  Specifically, let 𝒓𝒊,𝒕,𝒉
𝑺  denote a secondary risk factor shock, and let 𝒓𝒊,𝒕,𝒉

𝑷  denote a vector of Ki 

primary risk factor shocks chosen on a case-by-case basis for each secondary risk factor regression.  

The fitted τ ’th percentile of the conditional distribution of 𝒓𝒊,𝒕,𝒉
𝑺  given 𝒓𝒊,𝒕,𝒉

𝑷  is given by:24 

Equation C1 – Quantile Regression Model 

Qτ (𝒓𝒊,𝒕,𝒉
𝑺 |𝒓𝒊,𝒕,𝒉

𝑷 ) = hατ + 𝒓𝒊,𝒕,𝒉
𝑷 βτ ,  

where ατ is the estimated constant, and βτ is the estimated coefficients on the primary factor 

shocks, both given the percentile parameter τ.25  Quantile regression models are defined given a 

fixed percentile τ, which must be defined before the model can be estimated.  This parameter 

controls the location on the conditional distribution of the secondary risk factor data for which the 

model is predicting shocks.  In other words, τ determines the extremity of the generated shock 

values.  The Board chooses τ based on the severity of the primary risk factor shock, relative to 

historical data.  Specifically, let 𝒓̃𝒊,𝟏
𝑷  denote the primary shock for factor 𝒊  at a one-month 

horizon that is chosen in the stress-scenario,26 and let 𝒓𝒊,𝟏
𝑷  represent the one-month return on this 

primary risk factor.  To a first approximation, 𝝉 is chosen as the probability based on historical 

experience that the return for factor 𝒊  is smaller than the primary factor shock: 

Equation C2 – Targeted Quantile in Quantile Regression Model 

τ = Pr(𝒓𝒊,𝟏
𝑷 ≤ 𝒓̃𝒊,𝟏

𝑷 )

 

  

In the expression, Pr denotes the empirical probability based on the history of time-series 

data for the return for primary factor 𝒊.  For example, if in the historical data the return for 

 
24 A conditional distribution of a random variable X given another random variable Y describes the distribution of X 

given that a particular value of Y has been realized. 

25 The parameters are estimated using the algorithm in Koenker and D’Orey (1987). 

26 Since this is a fixed value, it does not have a subscript t. 
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primary factor 𝒊  is less than the primary shock 85 percent (15 percent) of the time, then 𝝉 would 

to a first approximation be 85 percent (15 percent), corresponding to an upper (lower) tail 

quantile.  Upper or lower tails may correspond to stress depending on the variable being 

modeled; that is, lower tail shocks are associated with stress for equities, while upper tails are 

associated with stress for volatilities or credit spreads.  As the time series data sample is limited 

for some secondary risk factors, it is difficult to accurately estimate the quantile regression for 

values of τ close to either zero or one, because there are not sufficient observations to identify 

the possible extreme values of the distribution.  The Board therefore introduces lower and upper 

bounds on τ given by the 10th and 90th percentiles (i.e., 10% ≤ τ ≤ 90%) and rounds 𝝉 estimates 

outside of this range to the closest bound.  Imposing these bounds cuts off some possible very 

severe scenario choices for secondary factors.  However, because the model already conditions 

on severe shock values for primary risk factors, the Board is not concerned that this limitation 

causes mild scenario shocks for secondary risk factors.  Data limitations also restrict how 

granular τ can be selected since the estimated coefficients will be statistically indistinguishable 

for small changes in τ.  It is therefore sensible to limit the percentile to τ ∈ {10%, 15%, 20%, . . 

. , 80%, 85%, 90%}.  In sum, the framework uses Equation C2 to quantify τ and then rounds it 

to the nearest five percentage-point interval, truncating it from below at 10 percent and from 

above at 90 percent. 

b. Quantile Autoregressive Model 

Implied volatility risk factors have strong autocorrelation properties in their time series data; 

that is, on average, data values observed in a given period are near the values observed in the 

previous period.  For example, implied volatility levels of equity indices are often autocorrelated 
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with a coefficient close to one.  Such factors are therefore better characterized by quantile 

autoregression models (Koenker and Xiao, 2006) in levels with the underlying spot risk factor shock 

treated as an exogenous variable (i.e., a variable for which the variation is driven by factors that are 

outside of the model).27  To state this model mathematically, consider a secondary risk factor that 

is an implied volatility of an option written on a security i with some maturity.  Let 𝝈𝒊,𝒕
𝑺  denote the 

implied volatility at end of month t; let abs(𝒓𝒊,𝒕,𝟏) denote the absolute value of the one-month 

log return of security i;28 and let Qτ (𝝈𝒊,𝒕
𝑺 |𝝈𝒊,𝒕−𝟏

𝑺 , 𝒓𝒊,𝒕,𝟏) denote the τ ’th percentile of the distribution 

of 𝝈𝒊,𝒕
𝑺  given 𝒓𝒊,𝒕,𝟏 and 𝝈𝒊,𝒕−𝟏

𝑺 . The fitted value of the τ ’th quantile of 𝝈𝒊,𝒕
𝑺  in the quantile 

autoregression is given by: 

Equation C3 – Quantile Autoregressive Model 

 Qτ (𝝈𝒊,𝒕
𝑺 |𝝈𝒊,𝒕−𝟏

𝑺 , 𝒓𝒊,𝒕,𝟏) = ατ +  abs(𝒓𝒊,𝒕,𝟏) βτ + 𝝈𝒊,𝒕−𝟏
𝑺 ρτ .  

Shock values to 𝝈𝒊,𝒕
𝑺  are computed using the estimated coefficients from Equation C3 as 

follows.  Let 𝝈𝒊,𝟎
𝑺   be equal to the implied volatility at the date at which the estimation sample ends.  

Starting from t =1, compute recursively the risk factor level after h months, where h is the shock 

calibration horizon of the considered factor, using Equation C3 with 𝒓𝒊,𝒕,𝟏.The risk factor 

shock is given as 𝝈𝒊,𝒉
𝑺 − 𝝈𝒊,𝟎

𝑺 .  To ensure high volatility levels in the stressed scenarios, the model 

in Equation C3 is implemented with the 90th percentile (i.e., 𝝉 = 𝟗𝟎%).29  

 
27 See Koenker, R., and Z. Xiao (2006): Quantile Autoregression, Journal of the American Statistical Association, 

101(475), 980–990. 

28 The absolute value is used to model the idea that volatility increases with large return shocks in either direction. 

29 For example, consider a volatility risk factor with  𝝈𝒊,𝟎
𝑺 = 𝟓𝟎𝟎 volatility points.  A one-month shock given parameters  

𝜶𝟎.𝟗𝟎 = 𝟏𝟎𝟎, 𝜷𝟎.𝟗𝟎 = 𝟎. 𝟎𝟓, and 𝝆𝟎.𝟗𝟎 = 𝟎. 𝟗𝟎, and a corresponding return shock equal to 𝒓𝒊,𝒕,𝟏 = −𝟏𝟎𝟎  is 

computed as 𝝈𝒊,𝒉
𝑺 − 𝝈𝒊,𝟎

𝑺 = 𝟏𝟎𝟎 + 𝟎. 𝟎𝟓 ⋅ 𝟏𝟎𝟎 + 𝟎. 𝟗 ⋅ 𝟓𝟎𝟎 − 𝟓𝟎𝟎 = 𝟓𝟓 volatility points. 
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c. Ordinary Regressions 

The stress scenario shock for some secondary risk factors is set equal to its expected 

value conditional on the primary risk factor shock(s) in the scenario, denoted E (𝒓𝒊,𝒕,𝒉
𝑺 |𝒓𝒊,𝒕,𝒉

𝑷 ).  

These models are preferred in cases in which tail realizations of the secondary and primary risk 

factors do not tend to coincide simultaneously.  The relationship between the secondary factor 

and the primary factor shocks is given by:  

Equation C4 – Ordinary Regression Model 

E (𝒓𝒊,𝒕,𝒉
𝑺 |𝒓𝒊,𝒕,𝒉

𝑷 ) = hα + 𝒓𝒊,𝒕,𝒉
𝑷 β ,  

where the parameters in the equation are estimated by ordinary least squares linear regression.  α 

is the estimated constant, and β is the estimated coefficient on the primary factor shock.30 

For public equity index returns, the Board follows Ang et al. (2006) and adds an 

asymmetric component to the model to capture the idea that stock returns are more sensitive to 

downside risk than upside risk and, as a result, bear a downside risk premium.31  The downside 

risk regression takes the form: 

Equation C5 – Downside Risk Regression Model 

E (𝒓𝒊,𝒕,𝒉
𝑺 |𝒓𝒊,𝒕,𝒉

𝑷 ) = hα + 𝒓𝒊,𝒕,𝒉
𝑷 β + 𝟏𝒓𝒊,𝒕,𝒉

𝑷 <𝟎𝒓𝒊,𝒕,𝒉
𝑷 𝜸,    

where 𝟏𝒓𝒊,𝒕,𝒉
𝑷 <𝟎 is a function that takes value one if 𝒓𝒊,𝒕,𝒉

𝑷 < 𝟎 and zero otherwise.  Finally, the 

ordinary regression counterpart to the autoregressive model in Equation C3 is given as:  

Equation C6 – Ordinary Autoregressive Model 

 
30 The “ordinary least squares” method estimates parameter values (𝜶, 𝜷) such that the sum of squared residuals, 

defined by ∑ (𝒓𝒊,𝒕,𝒉
𝑺 − 𝒉𝜶 − 𝒓𝒊,𝒕,𝒉

𝑷 𝜷)
𝟐𝑻

𝒕=𝟏  given the model in Equation C4, is minimized given data on 𝒓𝒊,𝒕,𝒉
𝑺  and 𝒓𝒊,𝒕,𝒉

𝑷  for 

t=1,2,…,T. 

31 See Ang, A., Chen, J., and Xing, X (2006) Downside risk. Review of Financial Studies, 19(4):1191–1239. 
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E (𝒑𝒊,𝒕
𝑺 |𝒑𝒊,𝒕−𝟏

𝑺 , 𝒓𝒕,𝒉
𝑷 ) = α +  𝒓𝒊,𝒕,𝒉

𝑷 β + 𝒑𝒊,𝒕−𝟏
𝑺 ρ.  

In this framework, secondary risk factor shocks can be generated following the same 

procedure as described for Equation C3. 

The full overview of regression links between secondary and primary risk factors by asset 

class is given below.  

2. Model Applications 

Shocks to secondary risk factors are computed using the models described above in 

Section C.ii.1, given the primary risk factor shocks as inputs.  For each asset class, Table C1 

shows how secondary risk factors are linked to the primary risk factors and which regression 

model is primarily used to generate shock values for that secondary risk factor asset class. 

Table C1 – Overview of primary modeling choices for secondary risk factors by asset class 

 

Secondary risk 

factor asset class 
Primary: 𝒓𝒕

𝑷 Spot model Implied volatility model 

Agencies Baa-Aaa credit spread Quantile regression, 

Equation C1. 

N/A 

Commodities:    

Metals Global Price Index of 

Metal 

Quantile regression, 

Equation C1. 

Quantile autoregression, 

Equation C3. 

Energy Global Price Index of 

Energy 

Quantile regression, 

Equation C1. 

Quantile autoregression, 

Equation C3. 

Foreign exchange U.S. dollar-to-Euro 

exchange rate 

Quantile regression, 

Equation C1. 

Quantile autoregression, 

Equation C3. 

Interest rates:    

10-year 

government bond  

U.S. 10-year Treasury 

bond yield 

Quantile regression, 

Equation C1. 

Quantile autoregression, 

Equation C3. 

3-month 

government bond  

U.S. 10-year-minus-3-

month Treasury term 

spread 

Ordinary autoregression, 

Equation C6. 

Quantile autoregression, 

Equation C3. 

10-year swap 10-year government 

bond yield 

Quantile regression, 

Equation C1. 

Quantile autoregression, 

Equation C3. 

3-month swap 10-year-minus-3-month 

government bond term 

spread 

Ordinary autoregression, 

Equation C6. 

Quantile autoregression, 

Equation C3. 
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Public equity S&P 500 index Downside risk 

regression, Equation C5. 

Quantile autoregression, 

Equation C3. 

Sovereign credit Baa-Aaa credit spread Quantile regression, 

Equation C1. 

N/A 

Corporate credit Baa-Aaa credit spread Quantile regression, 

Equation C1. 

N/A 

Municipal credit Baa-Aaa credit spread Quantile regression, 

Equation C1. 

N/A 

Securitized 

products 

Baa-Aaa credit spread Quantile regression, 

Equation C1. 

N/A 

 

3. Assumptions and Limitations 

The quantile regression model in Equation C1 uses percentile parameters τ derived from 

the severity of the primary risk factor shocks.  For example, if the S&P 500 index return is in the 

10th percentile of the historical return distribution, the public equity index returns for secondary 

risk factor markets will be estimated as the model-implied 10th percentile conditional on the S&P 

500 index return taking values in the 10th percentile.  This assumption is justified if the 

secondary and associated primary risk factors realize severe shock values in the same periods.  

The Board has confirmed that this condition is satisfied in the data across many of the sets of 

primary and secondary risk factors.   

All models are univariate; that is, they describe the dynamics of secondary risk factor 

shocks independently from other secondary risk factor shocks.  This approach yields simple 

models with easy implementation but may abstract from important correlations across risk factor 

shocks.  The Board has implemented multivariate models as alternative modeling approaches; 

see Section C.iv.  The results from this exercise indicate that results do not change considerably 

when using multivariate models in place of univariate ones. 
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The list of potential models for linking primary to secondary risk factor shocks does not 

include a model specification for describing term structures of shock values.  The set of 

secondary risk factors typically includes short-term and long-term government bond yields as 

well as swap rates.  The Board ensures proper relationships between these rates of different 

maturities by first modeling the long-term rate and then modeling the spread between long- and 

short-term rates. 

The use of quantile regression models requires an assumption on the targeted percentile 

parameter, 𝝉.  The Board chooses this parameter based on the severity of the primary risk factor 

shocks relative to historical data.  However, short time-series data puts limitations on the upper and 

lower bounds of 𝝉, which may cut off some very severe scenario choices for secondary risk factors.  

Moreover, data limitations restrict how granularly 𝝉  can be chosen.   

iii. Modeling the Relationship Between Secondary and All Remaining Risk Factors 

This section explains the second part of the modeling approach which describes the link 

between, on the one hand, the set of primary and secondary risk factors and, on the other hand, 

the remaining set of risk factors in the global market shock template.  This step involves the 

modeling of shocks to a large number of risk factors with widely different characteristics.  

Multiple modeling choices are, therefore, necessary to generate the remaining risk factor shocks.  

The Board employs copula models, regression models, the Nelson-Siegel model, a suite 

of volatility models based on the Nelson-Siegel model,32 and a set of simpler rules—such as 

mappings, multipliers, and averaging—as described below in Section C.iii.1.  Copula models 

characterize the co-movement of a large set of risk factors by modeling their dependence 

 
32 The idea of applying the Nelson-Siegel model in the context of implied volatility term structures is developed in 

Guo, B., Han, Q., and Zhao, B. (2014): The Nelson–Siegel Model of the Term Structure of Option Implied Volatility 

and Volatility Components, Journal of Futures Markets, 34(8), 788-806. 
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structure separately from their time-series dynamics.  These models are used as widely as 

possible when modeling the marginal distributions of different risk factors in their respective 

asset classes.  However, in some applications, the joint modeling of a large set of risk factors 

may not be practical or beneficial.  For example, securitized products backed by different types 

of loans are modeled separately.  In some cases where copula models are not employed, ordinary 

regressions are applied.  In other cases, such as capturing the structural relationship between 

implied volatility surfaces and factors that have a term structure, modeling using a copula is 

complex, which is inconsistent with the stress testing principle of simplicity.  In these cases, 

Nelson-Sigel models are used to approximately capture term structure relationships.  These 

models have parametric functional forms that describe term structures with just a few calibrated 

parameters and latent factors (for example, level, slope, and curvature factors).  Finally, for risk 

factors where data is limited or risk factors that are immaterial, the Board uses simpler methods, 

such as multipliers and mappings.   

1. Model Descriptions and Rationale 

This section describes the models used to estimate the relationship between primary and 

secondary risk factors and all remaining risk factors.  Ordinary regressions are described in 

Section C.ii.1.c. 

a. Copula Model 

Copula modeling is a statistical tool to generate multivariate distributions and to 

investigate the dependence structure between random variables.  Specifically, a copula is a 
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function that links univariate marginal distributions of random variables to their joint, 

multivariate distribution.33  For a primer on copula modeling, see Fan and Patton (2014).34 

Copula modeling offers several advantages over the quantile regression framework used 

for modeling secondary risk factors, which are particularly important for the purpose of mapping 

sets of secondary risk factor shocks into even larger sets of remaining risk factor shocks.35  First, 

it does not require that all marginal distributions be the same.  This feature is beneficial, for 

example, because it allows for different Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) specifications36 across different risk factors based on the empirical 

data—where one risk factor might be best modeled with a GARCH(1,1) specification, another 

might require an exponential GARCH (EGARCH) model as defined by Nelson (1991) or even a 

different type of model altogether.37  In contrast, traditional multivariate models often assume 

that all variables follow the same type of distribution.  Second, copula models allow the 

separation of the modeling of risk factors’ co-dependency structure, describing how different risk 

factors co-move at a given point in time, from the modeling of risk factors’ marginal 

distributions.  The time-series dynamics of each risk factor and the co-movement of all risk 

factors at a given point in time can therefore be modeled in two separate steps, using separate 

types of models.  This feature offers additional flexibility in terms of choosing any joint model 

 
33 A multivariate distribution is a probability function describing the joint behavior of two or more random variables 

simultaneously.  A univariate marginal distribution refers to the probability distribution of a single variable in a 

multivariate probability distribution, while disregarding the other variables. 

34 See Fan, Y., and A. J. Patton. (2014): Copulas in Econometrics, Annual Review of Economics, 6: 179–200. 

35 In contrast, the benefits of the copula model are less important for mapping one or a few primary risk factor 

shocks into a small set of secondary risk factor shocks, because it is a problem with much fewer variables. 

36 GARCH specifications refer to models of conditional volatility where the conditional volatility in period t 

depends on the conditional volatility in period (t-1) and the innovation of the time series model in period (t-1).  A 

GARCH(1,1) model is defined below in Equation C9. 

37 See Nelson, D. B. (1991): Conditional Heteroskedasticity in Asset Returns: A New Approach, Econometrica, 

59(2), 347-370. 
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that most closely resembles the tail-dependencies in the data, regardless of the choice of the 

marginal distributions.  These advantages are important for modeling the relationship that the 

primary and secondary risk factors have with the remaining risk factors.38  Copula models are 

also used by the European Central Bank to simulate adverse financial shocks for their stress test 

design (Rancoita and Ferreiro, 2019).39  

The Board uses t-copulas, as defined below, to model risk-factor dependence because t-

copulas better capture the clustering of extreme tail scenarios than copula models based on the 

multivariate Gaussian distribution.   

To obtain the marginal distributions for each individual risk factor, the Board uses 

GARCH models.  The GARCH framework is a widely used technique to account for conditional 

heteroskedasticity—i.e., time-varying conditional volatility, which is often exhibited in financial 

time series data (Bollerslev, 1986).40  Using GARCH models is common practice in financial 

applications of the copula approach.  For example, Patton (2006) uses a GARCH-t (1,1) 

specification when modeling the marginal distribution of the exchange rates.41  Similarly, 

Bartram et al. (2007) suggest a GJR-GARCH-t(1,1) specification, as defined by Glosten et al. 

(1993), for European stock market returns.42  The Board also follows this common practice and 

 
38 In contrast to the first modeling step, which involves modeling the relationship between primary and secondary 

risk factors in a low-dimensional setting, modeling the relationship between the remaining factors with the primary 

and secondary factors is a high-dimensional problem involving many risk factors. 

39 See Rancoita, E., and J. O. Ferreiro (2019): Technical note on the Financial Shock Simulator (FSS). European 

Systemic Risk Board. 

https://www.esrb.europa.eu/mppa/stress/shared/pdf/esrb.stress_test190402_technical_note_EIOPA_insurance~dcd7f

1ed08.en.pdf. 

40 See Bollerslev, T. (1986): Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, 

31(3), 307–327. 

41 See Patton, A.J. (2006): Modelling Asymmetric Exchange Rate Dependence, International Economic Review, 

47(2), 527–556. 

42 See Bartram, S.M., Taylor S.J., and Y.-H. Wang (2007): The Euro and European Financial Market Dependence, 

Journal of Banking and Finance 31(5), 1461–1481.; Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993): On the 
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uses GARCH-t conditional volatility specifications as widely as possible when modeling the 

marginal distributions of different risk factors in their respective asset classes. 

The following describes the copula framework mathematically.  Let the modeled risk 

factor series 𝒓𝒊,𝒕 have the following specification: 

Equation C7 – Copula Marginal Distribution Model 

      𝒓𝒊,𝒕 = 𝝁𝒊 + 𝝆𝒊𝒓𝒊,𝒕−𝟏 + 𝜺𝒊,𝒕 ,  

where 𝜺𝒊,𝒕 = 𝝈𝒊,𝒕𝒛𝒊,𝒕.  The innovation 𝒛𝒕 is distributed according to a student’s t-distribution with 

𝒗𝒊 degrees of freedom, standardized such that the distribution has mean zero and variance one—

i.e., 𝒛𝒊,𝒕~𝒕(𝟎, 𝟏, 𝝂𝒊).  The conditional variance 𝝈𝒊,𝒕
𝟐  is assumed to be measurable at time (t-1) and 

is described by one of the following models: 

Equation C8 – Constant Variance Model 

𝝈𝒊,𝒕
𝟐 = 𝝈𝒊

𝟐. 

Equation C9 – GARCH-t Model 

𝝈𝒊,𝒕
𝟐 = 𝝎𝒊 + 𝝓𝒊𝝈𝒊,𝒕−𝟏

𝟐 + 𝝍𝒊𝜺𝒊,𝒕−𝟏
𝟐 . 

Equation C10 – EGARCH-t Model 

𝐥𝐨𝐠 𝝈𝒊,𝒕
𝟐 = 𝝎𝒊 + 𝝓𝒊 𝐥𝐨𝐠 𝝈𝒊,𝒕−𝟏

𝟐 + 𝜽𝒊𝒛𝒊,𝒕−𝟏 + 𝝍𝒊(|𝒛𝒊,𝒕−𝟏| − 𝑬|𝒛𝒊,𝒕−𝟏|). 

The parameters of these models are estimated for each risk factor using maximum 

likelihood methods. 

 
Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks, The Journal of 

Finance: 48(5), 1779–1801.Guo, B., Han, Q., and Zhao, B. (2014): The Nelson–Siegel Model of the Term Structure 

of Option Implied Volatility and Volatility Components, Journal of Futures Markets, 34(8), 788-806. 
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The dependence among N risk factors within a given asset class is modeled by assuming 

that their innovations zi are linked through a t-copula.  More specifically, for each zi,t, the 

framework defines a uniformly distributed random variable: 

Equation C11 – Copula Uniform Variable Model 

 
𝒖𝒊,𝒕 = 𝑭𝒗𝒊

(√
𝒗𝒊

𝒗𝒊−2
𝒛𝒊,𝒕), 

 

where from Equation C7, it follows that 𝒛𝒊,𝒕 =
𝒓𝒊,𝒕−𝝁𝒊−𝝆𝒊𝒓𝒊,𝒕−𝟏

𝝈𝒊,𝒕
.  In this representation, the joint 

cumulative distribution function of ui is given by the copula 

Equation C12 – Copula Model 

 𝑪(𝒖𝟏, 𝒖𝟐, ⋯ , 𝒖𝑵, 𝝂, 𝜮) = 𝑭𝑵,𝝂,𝜮 (𝑭𝝂
−𝟏(𝒖𝟏), 𝑭𝝂

−𝟏(𝒖𝟐), ⋯ , 𝑭𝝂
−𝟏(𝒖𝑵)), 

 

where 𝑭𝝂 is a univariate cumulative t-distribution with degree of freedom 𝝂, and 𝑭𝑵,𝝂,𝜮 is an N-

dimensional multivariate cumulative t- distribution with degree of freedom 𝝂 and correlation 

matrix 𝜮 (see Fan and Patton (2014) for a detailed representation of the t-copulas).43  

One of the benefits of working with a multivariate t-distribution is that its conditional 

distributional properties are well established.  For example, partitioning a multivariate t-

distribution 𝑿 into two parts 𝑿𝟏 and 𝑿𝟐, Ding (2016) shows that the conditional distribution of 

𝑿𝟐 given 𝑿𝟏 is also a multivariate t-distribution.44  This property is useful for scenario design, 

because it allows the framework to describe the distribution of remaining risk factors in an asset 

class (e.g., public equity market returns) conditional on its secondary risk factors using a 

multivariate t-distribution.  

 
43 See Fan, Y., and A. J. Patton. (2014): Copulas in Econometrics, Annual Review of Economics, 6: 179–200. 

44 See Ding, P. (2016): On the Conditional Distribution of the Multivariate t Distribution, The American Statistician, 

70 (3): 293–295. 



37                                      Model Documentation: Detailed Modeling Approach 

 

 

Specifically, of the N risk factor shocks modeled by t-copula, assume that 𝑵𝑺 shocks are 

labeled as secondary risk factor shocks, and 𝑵𝑹 shocks are labeled as remaining risk factors 

shocks—i.e., 𝑵𝑺 + 𝑵𝑹 = 𝑵.  Following the research of Ding (2016), the distribution of 

𝑿𝒕
𝑹 = 𝑭𝝂

−𝟏(𝒖𝒕
𝑹) = (𝑭𝝂

−𝟏(𝒖𝟏,𝒕
𝑹 ), 𝑭𝝂

−𝟏(𝒖𝟐,𝒕
𝑹 ), ⋯ , 𝑭𝝂

−𝟏(𝒖𝑵𝑹,𝒕
𝑹 )) conditional on 𝑿𝒕

𝑺 = 𝑭𝝂
−𝟏(𝒖𝒕

𝑺) =

(𝑭𝝂
−𝟏(𝒖𝟏,𝒕

𝑺 ), 𝑭𝝂
−𝟏(𝒖𝟐,𝒕

𝑺 ), … , 𝑭𝝂
−𝟏(𝒖𝑵𝑺,𝒕

𝑺 )) can be expressed as an 𝑵𝑹-dimensional multivariate t-

distribution with 𝝂 + 𝑵𝑺 degrees of freedom:  

Equation C13 – Distribution of Conditional Multivariate Student’s t Distribution 

                                  𝑿𝒕
𝑹|𝑿𝒕

𝑺~𝒕𝑵𝑹
(𝝁𝑹|𝑺,

𝝂+𝒅𝑺

𝝂+𝑵𝑺 𝚺𝑹,𝑹|𝑺, 𝝂 + 𝑵𝑺). 

 

where 𝝁𝑹|𝑺 is the conditional mean and 𝚺𝑹,𝑹|𝑺 is the conditional correlation matrix.45  The 

computation of 𝝁𝑹|𝑺, 𝒅𝑺 and  𝚺𝑹,𝑹|𝑺 are explained in detail in Ding (2016) and requires the vector 

of 𝑿𝒕
𝑺 = 𝑭𝝂

−𝟏(𝒖𝒕
𝑺) and the correlation matrix 𝚺 as inputs.  To construct 𝒖𝒕

𝑺, the framework 

assumes that the h-week-horizon secondary risk factor shocks are evenly distributed across the h 

weeks.46  To construct 𝚺, the Board calculates the elements 𝚺𝒊,𝒋 (i.e., the correlation between the 

𝑖th and 𝑗th risk factor shocks) using Kendall’s tau formula with rank correlation 𝝉𝒊,𝒋:  

Equation C14 – Kendall’s Tau Formula 

 𝚺𝒊,𝒋 = 𝐬𝐢𝐧 (
𝝅

𝟐
𝝉𝒊,𝒋). 

 

Kendall’s tau formula is chosen because it is non-parametric and therefore does not 

assume linear or other pre-determined relationships between risk factors.47  It is also often less 

 
45 See Ding (2016) 

46 For example, a one-month shock value of an equity market drop of 12 percent is decomposed into a path in which 

the market drops 3 percent per week for 4 weeks.  

47 This method for estimating t-copula models was suggested by Zeevi, A. and Mashal, R. (2002): Beyond 

Correlation: Extreme Co-Movements Between Financial Assets. SSRN Working Paper.  See also Demarta, S. and 

McNeil, A. J. (2005): The t Copula and Related Copulas. International Statistical Review, 73(1), 111-129. 
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sensitive to outliers than other non-parametric methods, such as Spearman’s rho (Kendall, 

1970).48  To calculate the degree-of-freedom parameter 𝝂, the Board takes a conservative 

approach and sets it equal to the empirical tenth percentile of the estimated degree-of-freedom 

parameters from fitting bivariate t-copulas to each pair of factors whose dependency is modeled 

using the copula approach.49  Setting the degrees of freedom in the copula to the tenth percentile  

among the bivariate copulas (instead of a more central value) ensures the copula builds in 

extreme tail dependence—i.e., the idea that extreme events are more likely to occur than would 

be expected under a Gaussian distribution.  Failure to properly account for extreme dependence 

may result in inadequate stress in the expanded scenario shocks. 

The Board uses the multivariate conditional distribution of 𝑿𝒕
𝑹|𝑿𝒕

𝑺 to simulate the weekly 

path of the conditional mean 𝒖𝒕
𝑹|𝒖𝒕

𝑺.  These uniform variables are then transformed into 

standardized innovations zi,t using the t-distribution (Equation C11), which are then fed into the 

marginal model (Equation C7) to determine the weekly path of risk factor shocks 𝒓𝒊,𝒕.  Summing 

these shocks over the assumed liquidity horizon yields the cumulative shocks of the modeled risk 

factors.  The framework repeats the procedure up to 10,000 times and calculates the mean 

cumulative shocks of these modeled risk factors as their scenario shock values.50  For asset 

 
48 As noted by Demarta and McNeil (2005), this method does not guarantee that 𝚺 is positive definite.  In practice, 

the Board does not encounter issues with non-positive definite correlation matrices.  See also Kendall, Maurice G. 

Rank Correlation Methods Griffin, 1970. 

49 For example, if the dependencies among 20 factors are modeled together in a single copula, then there are 𝟐𝟎 ⋅
𝟏𝟗/𝟐 =  𝟏𝟗𝟎 bivariate pairs of factors.  A bivariate t-copula is fit to each pair, generating 190 bivariate degrees of 

freedom parameters.  The 19th smallest degrees of freedom parameter is the tenth percentile among the estimates.  

This is then used as the degrees of freedom for the copula that models the dependence among the 20 factors.       

50 The number of simulations is chosen as the smallest number (rounded to 1000, 5000, and 10,000, for example) 

such that randomization risk does not impact results considerably; that is, results should be roughly the same for 

every simulation without fixing the randomness or the seed.  
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classes in which shocks are defined as log returns (e.g., public equity), the last step involves the 

conversion of log returns into arithmetic returns for reporting purposes. 

b. Nelson-Siegel Model  

The Board uses the Nelson-Siegel functional form to generate term structures of risk 

factors shocks, including yield curves, futures curves, and implied volatility curves.  Several 

academic studies highlight the model’s success in describing such curves; see, e.g., Diebold and 

Li (2006) for yield curves and Guo, Han, and Zhao (2014) for implied volatility curves.51  Term 

structures of risk factor shocks involve two dimensions: calendar time t and time of maturity T 

(or, equivalently, a tenor given by T-t), which describes the maturity of a bond (for yield curves), 

a futures contract (for futures curves), or an option (for implied volatility curves).  

The Nelson-Siegel model for a risk factor level at time t with maturity at time T, 𝒑𝒊,𝒕(𝑻),           

is given by: 

Equation C15 – Nelson-Siegel Model 

 
                     𝒑𝒊,𝒕(𝑻) = 𝑳𝒊,𝒕 + (

𝟏−𝒆−𝝀𝑖(𝑻−𝒕)

𝝀𝒊(𝑻−𝒕)
) 𝑺𝒊,𝒕 + (

𝟏−𝒆−𝝀𝒊(𝑻−𝒕)

𝝀𝒊(𝑻−𝒕)
− 𝒆−𝝀𝒊(𝑻−𝒕)) 𝑪𝒊,𝒕.      

This formulation is a three-factor model, defined as level (𝑳𝒊,𝒕), slope (𝑺𝒊,𝒕), and curvature 

(𝑪𝒊,𝒕).  The factor loadings are determined by a single parameter 𝝀𝒊, which controls the rate of 

decay of the term structure (i.e., how quickly interest rates decline as the maturity of debt 

instruments increases).  Smaller values of 𝝀𝒊 generate a slower decaying curve.  

The decay parameter 𝝀𝒊    is estimated by fitting the Nelson-Siegel functional form to the 

historical term structure data, e.g., yield curves and at-the-money implied volatility curves, 

 
51 See Diebold, F. X., and C. Li (2006): Forecasting the Term Structure of Government Bond Yields, Journal of 

Econometrics, 130, 337–364.; Guo, B., Han, Q., and Zhao, B. (2014): The Nelson–Siegel Model of the Term 

Structure of Option Implied Volatility and Volatility Components, Journal of Futures Markets, 34(8), 788-806. 
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where the level, slope, and curvature factors are obtained by regressing the data onto the factor 

loadings given a 𝝀𝒊    value.  This procedure yields a time series for the level, slope, and 

curvature factors, which are subsequently used to calculate the risk factor shocks of the tenors in 

the published global market shock template.  

Specifically, risk factor shocks are computed as the difference between pre- and post-

shock risk factor levels.  For the pre-shock risk factor levels, the Board uses the most recent data 

from the scenario as-of-date.  For the post-shock risk factor levels, the Board uses various 

approaches for different types of risk factors.  Two variations are outlined below.  In both 

approaches, it is assumed for simplicity that the post-shock value of the curvature factor is 

constant and equals its historical time-series average.  The only remaining factors in the Nelson-

Siegel model are the level and slope factors; due to this assumption, post-shock values therefore 

only need to be estimated for the level and slope factors.  

The Board uses the following two approaches.  The first approach (Variation A) models 

the level and slope factors jointly using the copula model from which post-shock level and slope 

values can be generated.  For some applications, e.g., public equity option-implied volatilities, 

the term structure is better described by estimating the level and slope factors in two subsequent 

stages (Variation B).  

• Variation A: In the first variation, the level and slope factors of the Nelson-Siegel model 

are modeled using the copula.  The modeled time series (𝒓𝒊,𝒕) are the weekly logarithmic 

change in the level factor and the slope factor: 𝒓𝒊,𝒕 = (Δ𝑳𝒊,𝒕 , Δ𝑺𝒊,𝒕)′.  The model uses 

the marginal model in Equation C7 with 𝝆𝒊 = 𝟎 and the GARCH-t specification in 

Equation C9 to describe the time-series dynamics.  
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• Variation B: In the second variation, the model constructs the post-shock value of the 

level factor using a regression: 

Equation C16 – Regression Model for Level Factor Log Changes 

𝐥𝐧
𝑳̂𝒊,𝒕+𝟏

𝑳̂𝒊,𝒕
= 𝜶𝒊 + 𝜷𝒊 𝐥𝐧

𝒑𝒊,𝒕+𝟏

𝒑𝒊,𝒕
+ 𝜺𝒊,𝒕+𝟏.  

 This regression model gives the scenario-specific evolution and the post-shock value of 

the level factor using those of 𝒑𝒊,𝒕.  Next, the framework solves for the post-shock value 

of the slope factor by evaluating the post-shock values of the level factor, curvature 

factor, and 𝒑𝒊,𝒕 in the Nelson-Siegel functional form.  

 Given post-shock levels and slopes, the constant value for curvature, and the estimated 

decay factor, post-shock risk factor levels can be computed from Equation C15.  

c. Models for Volatility Shocks 

The Nelson-Siegel model in Equation C15 is used to generate shocks to term structures of 

implied volatility.  While the Board aims at maintaining consistent model implementations where 

possible, the modeling of volatility shocks involves variation to accommodate differences in 

products and data limitations across asset classes.  Specifically, three different approaches are 

implemented.  

(a) Nelson-Siegel-GARCH volatility model: The first approach is applied to public equity 

implied volatilities, which have a considerable volatility feedback effect—i.e., a linkage between 

returns and implied volatilities.  According to the volatility feedback effect (see for example, 

Campbell and Hentschel [1992] and Carr and Wu [2017]), with fixed future cash flow 

projections, an increase in a market’s systematic business risk—captured by an unexpected 

increase in market volatility—increases the cost of capital and reduces the present value of the 
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market portfolio.52  This effect explains the negative contemporaneous relation between the 

volatility shock and the market return.  It also implies that the larger the volatility shock, the 

more negative the market return.  

The model assumes that risk factor dynamics are described by Equation C7 with a 

GARCH-t conditional volatility model as supplied in Equation C9.  The model can be described 

in four steps: 

1. For each primary and secondary market selected as the underlying index, calculate 

the call option price using the GARCH model-implied, one-week conditional volatility in a 

Monte-Carlo simulation.53  Impute the implied volatility that produces the same call price using 

the Black-Scholes formula.54  Repeat this computation in the pre- and post-shock periods.  

Volatility shocks are defined as the difference between implied volatility levels at the as-of date 

(pre-shock level) and h weeks after the as-of date (post-shock level).  Post-shock volatility 

computation reflects the differences in spot shocks resulting from the copula model and 

generates the volatility feedback effect; that is, market indices that attain highly negative return 

shocks as copula model output also attain large volatility shocks.  

2. Using the Nelson-Siegel model with variation B, generate a term structure of implied 

volatility shocks for different tenors starting at one week.  Due to limitations in the availability of 

high-quality implied volatility data, this step is likely only feasible for a subset of risk factors; for 

 
52 See Campbell, J.Y., and L. Hentschel (1992): No News is Good News: An Asymmetric Model of Changing 

Volatility in Stock Returns, Journal of Financial Economics, 31(3), 281-318.; Carr P., and L. Wu (2017): Leverage 

Effect, Volatility Feedback, and Self-Exciting Market Disruptions, Journal of Financial and Quantitative Analysis, 

52(5), 2119-2156. 

53 Monte-Carlo simulation prices the option by averaging random paths of the option’s discounted payoff.  

54 The Black-Scholes formula for the call option is Call
BS(𝑆, 𝑟, 𝐾, 𝑇, 𝜎BS) = 𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2)  where 𝑑1 and 

𝑑2 are defined by: 𝑑1 =
1

𝜎BS√𝑇
(log (

𝑆

𝐾
) + (𝑟 +

(𝜎BS)
2

2
) 𝑇) and 𝑑2 = 𝑑1 − 𝜎BS√𝑇.  In this formula, 𝑆 is the stock 

price; 𝐾 is the strike price; 𝑇 is time-to-expiration; 𝑟 is the risk-free rate; 𝜎BS is the volatility; and 𝑁(. ) is the 

standard normal cumulative distribution function. 
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example, the set of secondary and primary risk factors (i.e., the estimation subset).  Denote this 

term structure of Nelson-Siegel model-implied volatilities by 𝚫𝝈𝒋
NS(𝝉) for 𝝉 ≥ 𝟏 week and 𝒋 =

𝟏, 𝟐 ⋯ , 𝑵, where N is the number of risk factors in the estimation subset. 

3. Reconcile the one-week volatility shocks generated by step one and step two by 

computing adjustment factors – by comparing the one-week implied volatility shocks resulting 

from the Nelson-Siegel with the one from the GARCH models.  The Board computed a simple 

adjustment factor to account for this difference, and it is computed for each of the risk factors in 

the estimation subset as: 

Equation C17 – Nelson-Siegel-GARCH Model Adjustment Factor 

 

                     Adjustment Factor
𝒋∈𝒌𝒎

=
𝟏

𝑵𝒌𝒎

∑ (𝚫𝝈𝒋
NS(𝟏) − 𝚫𝝈𝒋

GARCH)
𝑵𝒌𝒎

𝒋=𝟏
  

across developed and emerging markets k= {developed, emerging}.  𝑵𝒌𝒎
 is the number of risk 

factors of type 𝒌𝒎.  𝚫𝝈𝒋
GARCH is the volatility from step one and 𝚫𝝈𝒋

NS(𝟏) is the volatility from 

step two.  The one-week implied volatility shocks 𝜟𝝈𝒊∈𝒌𝒎

implied
(𝟏) of market i belonging to market 

type k= {developed, emerging} is calculated as the sum of the volatility shock from the GARCH 

model and the adjustment factor: 

Equation C18 – Formula for One-Week Implied Volatility Shocks 

𝜟𝝈𝒊∈𝒌𝒎

𝐢𝐦𝐩𝐥𝐢𝐞𝐝
(𝟏)  = 𝚫𝛔𝒊∈𝒌𝒎

GARCH + Adjustment Factor
𝒋∈𝒌𝒎

, 
 

 

for k={developed, emerging}. 

4. Generate a term structure of implied volatility for the risk factors outside the 

estimation subset.  To accomplish this goal, the framework calculates an average of all available 
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implied volatility curves for the estimation subset in order to compute a scaling factor δ(τ ) for 

volatility shocks at different tenors τ relative to the one-week tenor:  

Equation C19 – Term Structure Scaling Factor 

      𝜹(𝝉 ) =
𝟏

𝐍
∑

𝜟𝝈𝒊
𝐢𝐦𝐩𝐥𝐢𝐞𝐝

(𝝉)

𝜟𝝈𝒊
𝐢𝐦𝐩𝐥𝐢𝐞𝐝

(𝟏)

𝑵
𝒊=𝟏                        

where N is the number of risk factors in the estimation set.  Using implied volatility 

shocks 𝜟𝝈𝒊
𝐢𝐦𝐩𝐥𝐢𝐞𝐝

(𝟏) from Equation C18 and the scaling factor δ(τ) from Equation C19, the 

implied volatility shocks for the remaining market indices at all tenors are calculated as: 

Equation C20 – Formula for Implied Volatility Shocks at Any Tenor 

         𝜟𝝈𝒊
𝐢𝐦𝐩𝐥𝐢𝐞𝐝

(𝝉)  = 𝜟𝝈𝒊
𝐢𝐦𝐩𝐥𝐢𝐞𝐝(𝟏)𝜹(𝝉)                                                    

(b) The Nelson-Siegel-Copula Volatility Model: The second approach includes spot and 

volatility shocks from an asset class in a copula model to generate the remaining volatility risk 

factor shocks in that asset class.  This approach is applied for, e.g., foreign exchange-implied 

volatility curves.  Spot shocks in this copula model are the subset of shocks for which spot and 

volatility risk factors are generated by the modeling framework of the asset class.  Volatility 

shocks in the copula are weekly changes in one-month, at-the-money implied volatilities 

categorized as either secondary or remaining risk factors.  The time-series dynamics of spot 

shocks are described consistently with the spot model, while the time-series model of the 

volatility shocks is given by Equation C7 with 𝝆𝒊 = 𝟎 and the constant variance model supplied 

in Equation C8.  Once the entire set of one-month volatility shocks are generated, the Nelson-

Siegel model is used to populate the implied volatilities for the remaining maturities across the 

term structure.  Data may not be available for the full set of risk factors.  In such cases, this 

modeling approach is used for a subset of risk factors, and the remaining implied volatility 
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shocks are generated using the scaling approach described in step 4 of the Nelson-Siegel-

GARCH model described in Section C.iii.1.c(a) above. 

(c) The Five-Factor Nelson-Siegel Volatility Model: Finally, a third approach is needed to 

describe the term structures of swaption-implied volatilities, which involve an additional 

dimension.  Specifically, modeling this volatility becomes a two-dimensional problem in which 

the volatility depends on both option maturity 𝑻𝑶 and swap maturity 𝑻𝑺.  The Board models the 

swaption implied volatilities using a five-factor Nelson-Siegel functional form to describe both 

dimensions for secondary risk factors.  This five-factor model is given by 

Equation C21 – Five-Factor Nelson-Siegel Model 

  
𝝈𝒊,𝒕(𝑻𝑺, 𝑻𝑶) = 𝑳𝒊,𝒕 + (

𝟏 − 𝒆−𝝀𝒊
𝑺(𝑻𝑺−𝒕)

𝝀𝒊
𝑺(𝑻𝑺 − 𝒕)

) 𝑺𝒊,𝒕
𝒔

+ (
𝟏 − 𝒆−𝝀𝒊

𝑺(𝑻𝑺−𝒕)

𝝀𝒊
𝑺(𝑻𝑺 − 𝒕)

− 𝒆−𝝀𝒊
𝑺(𝑻𝑺−𝒕)) 𝑪𝒊,𝒕

𝒔 + (
𝟏 − 𝒆−𝝀𝒊

𝑶(𝑻𝑶−𝒕)

𝝀𝒊
𝑶(𝑻𝑶 − 𝒕)

) 𝑺𝒊,𝒕
𝑶

+ (
𝟏 − 𝒆−𝝀𝒊

𝑶(𝑻𝑶−𝒕)

𝝀𝒊
𝑶(𝑻𝑶 − 𝒕)

− 𝒆−𝝀𝒊
𝑶(𝑻𝑶−𝒕)) 𝑪𝒊,𝒕

𝑶  

 

 

Two parameters 𝝀𝒊
𝑶 and 𝝀𝒊

𝑺 are obtained by minimizing the calibration error for each 

country’s historical data over its sample period.  

To calculate the change in implied volatility over the liquidity horizon h, Δ𝝈𝒊,𝒉(𝑻𝑺, 𝑻𝑶), 

for all (𝑻𝑺, 𝑻𝑶) pairs, the model needs level, slope, and curvature factor shocks based on 

Equation C21.  For simplicity, the Board assumes that the option curvature shock is equal to the 

swap curvature shock—i.e., ∆𝑪𝒊,𝒉
𝑶 = ∆𝑪𝒊,𝒉

𝑺 , which in turn reduces the number of factor shocks to 

four: ∆𝑳𝒊,𝒉, ∆𝑺𝒊,𝒉
𝑶 , ∆𝑺𝒊,𝒉,

𝑺  and ∆𝑪𝒊,𝒉.  To generate these shocks, the framework uses four implied 

volatility shocks for the secondary risk factors, which are chosen from the U.S. dollar, Japanese 
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yen, pound sterling, and Euro rates curves.  Once these shocks are quantified, the framework 

uses different pairs of (𝑻𝑺, 𝑻𝑶) and the parameters 𝝀𝒊
𝑶 and 𝝀𝒊

𝑺 in a first-differenced version of 

Equation C21 that reveals 𝚫𝝈𝒊,𝒉(𝑻𝑺, 𝑻𝑶)  as a function of ∆𝑳𝒊,𝒉, ∆𝑺𝒊,𝒉
𝑶 , ∆𝑺𝒊,𝒉,

𝑺 ∆𝑪𝒊,𝒉.  Volatility 

shocks 𝚫𝝈𝒊,𝒉(𝑻𝑺, 𝑻𝑶) for all swap and option maturities (𝑻𝑺, 𝑻𝑶) for the U.S. dollar, Japanese 

yen, pound sterling, and Euro rates are computed from this specification.  A multiplier method is 

used to construct rates volatility curve shocks for the remaining countries.  

d. Multipliers, Mappings, Averaging, and the Percentile Method 

Some risk factors are difficult to analyze within the scope of the above models due to 

either the nature of the data or lack of data.  For such cases, the Board uses simpler methods, 

such as multipliers, mappings, averaging, and the percentile method.  

Multipliers can be interpreted as regression models as described in Section C.iii.1.b, 

where the parameters are calibrated using alternative data sources determined from expert 

judgement.  This approach is used when a statistical relationship between two variables is 

expected, but a lack of high-quality data prohibits proper estimation of this relationship.  

For some risk factors, reasonable multipliers that can be properly justified may not exist, 

and better results can be obtained by other approaches.  In such cases, a risk factor may be 

mapped to another risk factor—e.g., by setting the shock equal to another risk factor shock or by 

averaging a set of other risk factor shocks.  These methods are subject to justification and 

scrutiny by subject-matter experts and leadership, following the same guidelines and processes 

for judgment-based adjustments to scenarios as described in Section B.ii.2. 

Finally, the Board applies the percentile method used for generating values of primary 

risk factor shocks to set the shock values of some risk factors directly (see Section B.i.).  This 
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method may be used when there are data limitations and no mappings, multipliers, or averaging 

schemes deemed reasonable. 

2. Model Applications 

Shocks to the remaining risk factors are modeled separately for each asset class because 

risk factor shocks within asset classes are more similar and more correlated than risk factors 

across asset classes.  The consistency and correlation of shocks across asset classes is captured 

by the correlations among shocks to primary and secondary risk factors.  Table C2 provides an 

overview of the modeling approaches applied to spot and volatility shocks within each asset 

class.  For each asset class, the model input is time-series data of risk factor returns, prices, or 

implied volatilities along with the shock values generated for the secondary risk factors.  The 

output is the risk factor shocks outlined in Table B1.  For corporate and sovereign credit shocks 

and shocks to the volatility of commodity and rates products, the Board publishes both absolute 

and relative shock values.  The absolute shocks show either the change in the credit spread level 

(corporate and sovereign credit) or the implied volatility level (commodity and rates volatility).  

For these cases, the models produce absolute shocks, and the relative shocks are subsequently 

calculated as the absolute shocks relative to the corresponding levels on the as-of date.  The 

following subsections provide additional details on model implementations for most asset 

classes. 
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Table C2 – Overview of modeling approaches for remaining risk factors by asset class 

 

Risk factor asset 

class 
Spot/futures curve shocks Option-implied volatility shocks 

Agencies Percentile method. N/A 

Commodities Nelson-Siegel model, Equation C15 

with variations A and B.  Weekly data 

for spot prices, as well as futures curve 

level and slope factors, are modeled in a 

GARCH-copula framework.  Univariate 

log returns for spot/level factor follow 

an EGARCH model described by 

Equation C7 with no autoregressive 

term (𝝆𝒊 = 𝟎,) and C10.  The slope 

factor is log-transformed, and the 

resulting series is modeled with 

equations C7 with an autoregressive 

term included and C10 as above.  

Dependence is modeled with the copula 

in Equation C12. 

Multipliers. 

Copula model of one-month 

implied volatility shocks given 

Equation C7 with 𝝆𝒊 = 𝟎, and 

C89. 

Categorical mapping. 

Foreign exchange Copula model of weekly log returns.  

Univariate returns follow a GARCH 

model described by Equation C7 with 

𝝆𝒊 = 𝟎 and C9.  Dependence is 

modeled with the copula in Equation 

C12. 

Regional mapping. 

Nelson-Siegel-copula volatility 

model. 

Regional mapping. 

Public equity Copula model of weekly log returns.  

Univariate returns follow a GARCH 

model described by Equation C7 with 

𝝆𝒊 = 𝟎55 and C9.  Dependence is 

modeled with the copula in Equation 

C12. 

Regional mapping. 

Nelson-Siegel-GARCH volatility 

model.  

 

Public equity 

dividends 

Percentile method. N/A 

Interest rates  Nelson-Siegel model, Equation C15 

with variation A, where level and slope 

factors are modeled in a copula model.  

Five-factor Nelson-Siegel 

volatility model. 

Multipliers. 

 
55 Setting the autoregressive parameter to zero (i.e., 𝝆𝒊 = 𝟎) reflects that log prices behave as a random walk; i.e., 

without forecastable patterns.  Although subject to debate, this is a well-known assumption in the literature; see 

Campbell, J.Y., A.W. Lo, and A.C. MacKinlay (1997): “The Econometrics of Financial Markets,” Princeton 

University Press. 
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Risk factor asset 

class 
Spot/futures curve shocks Option-implied volatility shocks 

Level and slope factors follow univariate 

EGARCH models described by 

Equation C7 and C10.  Dependence is 

modeled with the copula in Equation 

C12. 

Percentile method. 

Sovereign credit Copula model of weekly spread changes.  

Univariate spread changes follow the 

model described by Equation C7 with 

𝝆𝒊 = 𝟎 and C8.  Dependence is 

modeled with the copula in Equation 

C12. 

N/A 

Corporate credit Copula model of weekly changes in 

spreads between adjacent ratings.  

Univariate spread changes follow a 

GARCH model described by Equation 

C7 with 𝝆𝒊 = 𝟎 and C9.  Dependence is 

modeled with the copula in Equation 

C12.  The model is implemented 

separately for bonds and single-name 

CDS. 

Multipliers. 

N/A 

Municipal credit Copula model of weekly spread changes.  

Univariate spread changes follow the 

model described by Equation C7 with 

𝝆𝒊 = 𝟎 and C8.  Dependence is 

modeled with the copula in Equation 

C12. 

Multipliers. 

N/A 

Other fair value 

assets 

Mapping. N/A 

Securitized 

products 

Ordinary regression models. 

Multipliers and mappings. 

N/A 

 

a. Commodities 

Commodity spot shocks and the Nelson-Siegel level and slope factors of the futures 

curve, defined by Equation C15, are modeled jointly using the copula model due to the 

advantages of this approach, as discussed in Section C.iii.1.a.  This method incorporates the 
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variations A and B of the Nelson-Siegel model (see Section C.iii.1.b).  Spot and future rates are 

modeled jointly to capture the dependence between these risk factor shocks.  Future curves are 

described by the Nelson-Siegel model for parsimony and to impose a smooth term structure of 

futures rate shocks.  

For commodities for which data is limited, the Board uses a multiplier method, where 

multipliers are computed based on the modeled risk factors.  Such multipliers are constructed, for 

example, by the ratio of shocks at each maturity to the one-month shock.  

The implied volatility of secondary risk factors is modeled using the copula model.  Due 

to limited data availability, the implied volatility of the remaining risk factors is modeled using 

category averages, similar to the regional-average approach applied in foreign exchange. 

b. Foreign Exchange 

The majority of foreign exchange spot shocks are generated using the copula model due 

to the advantages of this approach discussed in Section C.iii.1.a.  Implied volatility shocks are 

mainly generated using the Nelson-Siegel-copula model, described in Section C.iii.1.c, to capture 

the term structure of implied volatilities.  Due to limited availability of foreign exchange option 

data, the volatility model is estimated for secondary risk factor implied volatilities only, whereas 

the remaining implied volatility shocks are obtained using scaling. 

Due to data limitations, some shocks to exchange rate returns and their implied 

volatilities are generated using mapping and averaging procedures.  Specifically, the Board 

groups currencies by regions that match risk characteristics or geography.  Then, for each region 

and data-limited series, the model generates shocks to dollar-exchange rate returns and implied 

volatilities by mapping from the respective shock to a single U.S. Dollar exchange rate return or 
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implied volatility from the copula model that represents that region, or by mapping to an average 

of exchange rate return shocks or implied volatility shocks obtained from the copula model.  For 

exchange rates that do not involve the U.S. Dollar, exchange rate return shocks are computed 

based on shocks to underlying U.S. Dollar exchange rate returns.56  In addition, implied volatility 

shocks are computed by averaging representative regional U.S. Dollar exchange-rate implied 

volatility shocks across regions.  Finally, shocks for pegged currencies are determined by the 

shocks for the currencies to which they are pegged. 

c. Interest Rates 

Informed by academic research, such as Diebold and Li (2006), the Board uses the 

Nelson-Siegel model to describe the term structures of government bond yields and swap rates.57  

To preserve a relationship between government bond yields and swap rates within countries, 

swap rate shocks are generated by applying the Nelson-Siegel model to swap spreads (i.e., the 

difference between a swap rate and the corresponding government bond yield).  

Swaption-implied volatility shocks for the secondary risk factors are modeled using the 

five-factor Nelson-Siegel model in Equation C21, because these shocks have both a dimension 

capturing swaption maturity and a dimension capturing the maturity of the underlying swap.  

Only implied volatilities for the secondary risk factors are modeled this way due to lack of 

swaption data for other risk factors.  A multiplier method is used to construct rates volatility 

curve shocks for the remaining countries.  These shocks depend intuitively on the relationship 

between these countries’ government yield shocks and the secondary risk factors’ government 

 
56 We can infer non-dollar exchange rates from dollar-exchange rates because the exchange rate between any two 

currencies is by a no-arbitrage relationship equal to the ratio of each currency’s exchange rate against a third 

currency. 

57 See Diebold, F. X., and C. Li (2006): Forecasting the Term Structure of Government Bond Yields, Journal of 

Econometrics, 130, 337–364. 
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yield shocks.  Other rates shocks (i.e., inflation and cross-currency versus U.S. dollar basis) are 

determined by the percentile method, as described in Section C.iii.1.d. 

d. Public Equity 

The public equity model generates index shocks using the copula model due to the 

advantages of this approach discussed in Section C.iii.1.a and regional mappings, where the 

copula cannot be implemented due to lack of data.  Mapped risk factors are assigned by mapping 

the shock to a regional index that matches its risk characteristics or geography.   

Implied volatility shocks are generated using the Nelson-Siegel-GARCH model 

described in Section C.iii.1.c, because equity returns have a considerable volatility feedback 

effect; see, e.g., Campbell, J.Y., and L. Hentschel (1992).58  The model is estimated only for 

primary and secondary risk factors, because they have ample options data with various times-to-

maturity and reflect the characteristics of major developed and emerging equity markets.  The 

Nelson-Siegel model decay parameter for each market, 𝝀𝒊, is estimated using crisis-period59 data 

only, as a full-sample estimation results in volatility curves with a slow decay for some markets, 

with the implication that the long-tenor volatility shocks for these markets are too severe relative 

to other markets.  

e. Sovereign Credit 

The sovereign credit model produces sovereign five-year credit default swap spread 

shocks to selected countries, e.g., Australia, Canada, and France, using the copula model due to 

 
58 See Campbell, J.Y., and L. Hentschel (1992): No News is Good News: An Asymmetric Model of Changing 

Volatility in Stock Returns, Journal of Financial Economics, 31(3), 281-318. 

59 For this purpose, crisis periods are defined as times where the S&P 500 index return (the public equity primary 

risk factor) experiences values in the bottom tenth percentile of its historical distribution. 
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the advantages of this approach discussed in Section C.iii.1.a.  Due to lack of data, some 

countries’ CDS spread shocks are mapped to other countries based on regional similarities. 

f. Corporate Credit 

The corporate credit model uses the copula model to describe shocks to advanced-

economy bonds and single-name CDS across different ratings due to the advantages of this 

approach discussed in Section C.iii.1.a.  Unlike the public equity and the foreign exchange 

models, spread shocks for credit ratings have a particular cross-sectional pattern; that is, shocks 

are monotonically increased as credit quality deteriorates (from AAA-rated securities to CCC 

securities).  To preserve this desirable pattern in modeled results of both securities, the approach 

focuses on modeling the shock to the BBB-rated spread and the shocks to changes in spreads 

between adjacent ratings (spacings), e.g., AAA-AA, AA-A, and A-BBB.   

Due to lack of data, the remaining corporate credit shocks are obtained using various 

multipliers on the model-generated shocks.  For example, the emerging market bond shocks are 

calculated by weighing the advanced economy bond shocks by a multiplier given by the 

Corporate Emerging Markets Bond Index Credit Investment Grade Strip spread (a secondary risk 

factor) divided by the sum of advanced economy bond shocks across ratings AAA, AA, A, and 

BBB. 

g. Municipal Credit 

In municipal credit, changes in spreads on municipal AAA- and A-rated bond indices are 

modeled using the copula model due to the advantages of this approach discussed in Section 

C.iii.1.a.  Changes in spreads bond, CDS, and other municipal credit products across different 

credit ratings are generated using multipliers due to data limitations. 
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h. Other Fair Value Assets 

Other Fair Value Assets (OFVA) cover illiquid fair value securities that cannot be 

grouped into another asset class.  Some examples for OFVA are public welfare investments 

covering housing credit, tax credits, and energy investments.  Due to government guarantees, 

these investments are subject to low loss rates.  Shocks to housing credit and tax credit are set at 

-4.9 percent and shocks to energy investments are set at -13.9 percent.  For other OFVA, the 

Board sets a simple mapping rule in which equity shocks are equal to the S&P 500 return, and 

debt shocks are equal to the B-rated high yield leverage loan index shock from corporate credit.  

i. Securitized Products 

Securitized products include non-agency commercial and residential mortgage-backed 

securities, asset backed securities, and other products including corporate collateralized debt 

obligations, corporate collateralized loan obligations, and warehouse loans.  All shocks are 

specified as market value haircuts, expressed in percentage terms, and applied over a liquidity 

horizon of three months.  Market value haircuts are generated for representative portfolios 

constructed by sampling securities across three dimensions: product types (e.g., residential 

mortgage backed securities), vintages (e.g., ≤ three years), and ratings (e.g., AAA).  The purpose 

of the representative portfolios is to provide a reflection of how the prices of current outstanding 

tranches of a given security type would respond to shocks to spreads.  For a portfolio indexed by 

r, the market value haircut is defined as: 

Equation C22 – Definition of Market Value Haircut 

 

Market value haircut𝒓 =
𝑷𝒓

P(post-shock) − 𝑷𝒓
P(pre-shock)

𝑷𝒓
P(pre-shock)
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where 𝑷𝒓
P(pre-shock) denotes the portfolio value before the shock and 𝑷𝒓

P(post-shock) is the 

portfolio value after an appropriate spread-widening shock is applied.  

The Board constructs these representative portfolios from individual securities by 

sampling a vendor-provided universe of asset-backed securities using a set of general rules (for 

example, the security status is active; pool factor60 is greater than 10 percent; maturity is greater 

than or equal to one year; coupon data is valid, i.e., non-zero and non-N/A) and a set of product-

specific rules (for example, including fixed-rate coupons for securities backed by auto loans). A 

representative portfolio typically contains at least ten securities.61  In cases where an initial set of 

rules returns a portfolio with fewer than ten constituents, the portfolio definition is expanded to 

include one or more neighboring vintages.62  Portfolio weights are given by the current amount 

outstanding on each underlying bond normalized by the total outstanding amount such that 

weights sum to one for each portfolio.  Outstanding amounts are measured on the pre-shock date, 

as defined below.  Specifically, for a portfolio r constituted by 𝑵𝒓 securities with outstanding 

amounts63 given by 𝑩𝒊(pre-shock) for securities indexed by 𝒊 = 𝟏, 𝟐, ⋯ , 𝑵𝑹, the portfolio 

weights are: 

Equation C23 – Representative Portfolio Weights 

 

𝒘𝒊 =
𝑩𝒊(pre-shock)

∑ 𝑩𝒊(pre-shock)
𝑵𝑹
𝒊=𝟏

.  

 
60 The percentage of the original principal that remains outstanding. 

61 Portfolios are typically comprised of between ten and 30 securities. 

62 If vintage expansion does not yield a sufficiently large number of tranches, shock values are identified by 

mappings and multipliers, as described in Section C.iii.1.d.  The portfolio definition is not expanded across rating 

grades because a portfolio covering several rating grades would fail to assign risk-sensitive shocks to lower-rated 

securities. 

63 Given for each bond by the number of outstanding bonds multiplied by its face value. 
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Portfolio values are computed as the weighted average of the prices of the constituent 

securities.  Specifically, for a portfolio indexed by r constituted by 𝑵𝒓 securities, the value is 

given as: 

Equation C24 – Representative Portfolio Value 

 

𝑷𝒓
𝑷(t) = ∑ 𝒘𝒊𝑷𝒊

S(𝒕)
𝑵𝒓

𝒊=𝟏
,  

where 𝑷𝒊
S(𝒕) for t in {pre-shock, post-shock} defines the pre-shock and post-shock prices of 

individual securities.  The remainder of this section describes how the Board obtains these prices 

to compute the market-value haircuts.  This method is fundamentally different from other classes 

because of the specialized nature of securitized debt.  We implement this methodology to ensure 

that pricing of asset-backed securities and the modeling of subsequent market value shocks 

properly accounts for the idiosyncratic waterfall structure of the securitized debt when 

computing discounted cashflows.  The method involves product prices and spreads at the 

portfolio level (across product types, ratings, and vintages), for product indices (across product 

types and ratings), and for individual securities.  To distinguish these levels, prices and spreads 

are denoted with superscripts as follows: 

• 𝑷𝒓
P(𝒕) and 𝑺𝒓

P(𝒕) are prices and spreads for representative portfolios, indexed by r. 

• 𝑷𝒋,𝑹
I (𝒕) and 𝑺𝒋,𝑹

I (𝒕) are prices and spreads for a product index with rating R, indexed by j. 

• 𝑷𝒊
S(𝒕) and 𝑺𝒊

S(𝒕) are prices and spreads for individual securities, indexed by i. 

The pre-shock price of a security i, 𝑷𝒊
S(pre-shock), is defined as the security’s price on a 

pre-determined, pre-shock date.  Given this pre-shock date, prices are obtained from a third-party 

vendor.  For liquid securities, the vendor price is typically close to commonly used pricing 

information available to market participants such as the Trade Reporting and Compliance Engine 
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(TRACE) prices.   For illiquid securities, the vendor relies on model-based valuations that 

consider the last traded price, prices of similar traded securities, and broker input.   

The post-shock price of a security i, 𝑷𝒊
S(post-shock), is computed using a vendor cash 

flow engine, which computes, at time t, the prices of an individual security 𝑷𝒊
S(𝒕) given a spread 

𝑺𝒊
S(𝒕) over the spot rate curve that reconciles the value of the bond with its market price:  

Equation C25 – Pricing (Cash Flow) Engine 

 

𝑷𝒊
𝐒(𝒕)  = 𝒇𝒊,𝒕 (𝑺𝒊

𝐒(𝒕)).  

The function 𝒇𝒊,𝒕(⋅) represents the pricing (cash flow) engine.  It has security-level and 

time subscripts (i, t) because it uses security-level characteristics defined and provided by the 

vendor at a given point in time.  The Board applies characteristics of the collateral at the pre-

shock date for simplicity−that is, 𝒇𝒊,𝒕(⋅) = 𝒇𝒊,pre-shock(⋅)−though these may change between the 

pre-shock and post-shock dates.  The characteristics of the collateral capture credit risk (e.g., 

default rates, delinquencies, collateral quality as measured by loan ratings and corporate 

leverage, and subordination levels), interest rate risk (e.g., reference curves such as Treasury 

swap, and the Secured Overnight Financing Rate, prepayment speed, and duration), market risk 

(e.g., bid-ask spreads), and other risks (e.g., capital waterfall and issuer/servicer risk).  The Board 

uses the vendor’s default set of characteristics, which vary by product type.  For example, for 

commercial mortgage-backed securities, the default prepayment values are set to zero as 

prepayments are typically restricted or penalized.  In contrast, prepayments are a more important 

characteristic for residential mortgage-backed securities, and their default values are set by the 

underlying collateral.  
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The post-shock price of security i is computed by applying the cash flow engine on a 

stressed spread, given by the sum of a pre-shock spread 𝑺𝒊
S(pre-shock) and a stressed term 𝚫𝑺𝒊

S: 

Equation C26 – Post-Shock Price of Individual Securities 

 
𝑷𝒊

S(post-shock) = 𝒇𝒊,pre shock(𝑺𝒊
S(pre-shock) + 𝚫𝑺𝒊

S).   

For operational efficiency, the Board applies the pricing engine over a non-uniform grid 

(i.e., 100, 200, 500, 1000, and so on basis points).  This step allows the Board to pre-run these 

computations before the spread shocks are finalized.  Specifically, prices are computed for 

(𝑺𝒊
S(pre-shock) + 𝚫𝐬) for 𝚫𝐬 = {100, 200, 500, 1000…} basis points.  

The pre-shock spread 𝑺𝒊
S(pre-shock)  is computed from the pricing engine given the pre-

shock price 𝑷𝒊
S(pre-shock): 

Equation C27 – Pre-Shock Spread of Individual Securities 

 
𝑺𝒊

S(pre-shock) = 𝒇𝒊,pre shock
−𝟏 (𝑷𝒊

S(pre-shock)),  

where  𝒇𝒊,pre-shock
−𝟏 (⋅) refers to solving for the spread given a price in the pricing engine. 

The Board models the stress in the spread of security i, 𝚫𝑺𝒊
S, at the level of representative 

portfolios.  For a security i represented by portfolio r, the spread shock is 𝚫𝑺𝒊
S = 𝚫𝑺𝒓

P.  Stressed 

spreads of representative portfolios are modeled given spread shocks to AAA-rated securitized 

product indices: 𝚫𝑺𝒋,AAA
I   where 𝒋 denotes the index (e.g., the fixed-rate AAA-rated residential 

mortgage-backed security index).  These AAA-rated index spread shocks are secondary risk 

factors,64 chosen because they represent the bulk of issuance and trade in the most liquid 

markets.  

 
64 Shocks to these secondary risk factors are modeled using the Baa-Aaa spread as explained in Section C.ii. 
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The model has two steps.  The first step uses ordinary regressions to project log-

differences of spreads of indices for all other ratings R (e.g., AA, A, and BBB), 𝚫 𝐥𝐧  𝑺𝒋,𝑹
I (𝒕), 

onto the log-differences of spreads for AAA-rated indices for each product index j, 

𝚫 𝐥𝐧  𝑺𝒋,AAA
I (𝒕).  Here, the argument t indicates the time dimension of the log-differenced spread 

data.  Log-differences are defined over the three-month liquidity horizon.65  This modeling 

approach is chosen as it is a simple method that captures how systemic risks impact securitized 

product tranche spreads.66  The regression specifications are as follows: 

Equation C28 – Regression Model for Index Spreads 

 
𝚫 𝐥𝐧 𝑺𝒋,𝑹

𝐈 (𝒕) = 𝜶𝒋 + 𝜷𝒋𝚫 𝐥𝐧  𝑺𝒋,AAA
I (𝒕) + 𝜺𝒋(𝒕),  

where 𝜺𝒋(𝒕) is normally distributed with mean zero and variance 𝝈𝜺,𝒋
𝟐 .  The coefficients 

are estimated using ordinary least squares, giving estimates 𝜶𝒋̂, 𝜷𝒋̂, and 𝝈̂𝜺,𝒋
𝟐  such that the change 

in the logarithm of the expected spread shock for index j with rating R given the spread shock to 

the corresponding AAA-rated index can be computed as: 

Equation C29 – Post-Shock Index Spread 

 

𝚫 𝐥𝐧 𝑺𝒋,𝑹
𝐈 (post-shock) = 𝜶̂𝒋 + 𝜷̂𝒋 𝐥𝐧 (

 𝑺𝒋,AAA
I (pre-shock) +  𝚫𝑺𝒋,AAA

I

 𝑺𝒋,AAA
I (pre-shock)

) +
𝝈̂𝜺,𝒋

𝟐

𝟐
,  

 
65 Specifically, letting 𝑺𝒋,𝑹

I (𝒕) denote monthly spread data for index j with rating R at month t, the log difference is 

given as: 𝚫 𝐥𝐧 𝑺𝒋,𝑹
𝐈 (𝒕) = 𝐥𝐧 𝑺𝒋,𝑹

𝐈 (𝒕)  − 𝐥𝐧 𝑺𝒋,𝑹
𝐈 (𝒕 − 𝟑M) . 

66 Idiosyncratic risks are likely to average out because the model is considering indices rather than individual 

securities.  Moreover, the literature (for example, Coval et al. [2009] and Hamerle et al. [2009]) has emphasized that 

the pooling and tranching process involved in securitization causes structured product tranches to load more heavily 

on systemic risks than non-securitized debt securities with comparable probabilities of default. See Coval, J. D., 

Jurek, J. W., & Stafford, E. (2009). Economic Catastrophe Bonds. American Economic Review, 99(3), 628-66.; 

Hamerle, A., Liebig, T., & Schropp, H. J. (2009). Systematic Risk of CDOs and CDO Arbitrage. Deutsche 

Bundesbank Discussion Paper Series 2. No. 2009, 13. 
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where  𝑺𝒋,AAA
I (pre-shock) is the spread of the AAA-rated index j on the pre-shock date.  The 

variance term 𝝈̂𝜺,𝒋
𝟐 /𝟐 is added to account for the convexity term when taking the expectation over 

the logarithmic function in Equation C31.  

The second step of the model calculates the spread shock, 𝚫𝑺𝒓
P, under the assumption that 

the shock impacts the spread of representative portfolios by the same amount as its impact on the 

index.  Specifically, for a representative portfolio r, for the product type described by index j 

with rating R, the Board assumes that: 

Equation C30 – Mapping Representative Portfolio Spread Shocks to Index Spread Shocks 

 
𝚫 𝐥𝐧 𝑺𝒓

P(𝒕) = 𝚫 𝐥𝐧 𝑺𝒋,𝑹
I (𝒕).  

This is a simplifying assumption that facilitates the computation of the post-shock spread 

of the individual securities, based on the indices for which data is available.67  Given this 

assumption, the spread shock for representative portfolio r for the product type described by 

index j is given by: 

Equation C31 – Representative Portfolio Spread Shock 

 
𝚫𝑺𝒓

P = 𝑺𝒓
P(pre-shock)[exp(𝚫 𝐥𝐧 𝑺𝒋,𝑹

I (post-shock)) − 𝟏],  

where 𝑺𝒓
P(pre-shock) is the pre-shock spread of the representative portfolio approximated using 

the pre-shock spreads for individual securities given by the pricing engine (see Equation C27) 

and portfolio weights: 

Equation C32 – Pre-Shock Representative Portfolio Spread 

 

𝑺𝒓
P(pre-shock) =

𝟏

𝑵𝒓
∑ 𝒘𝒊𝑺𝒊

S(pre-shock)
𝑵𝒓

𝒊=𝟏
.  

 
67 Due to lack of data, the assumptions cannot be justified numerically. 
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Using 𝚫𝑺𝒓
P as proxies for  𝚫𝑺𝒊

S in the pricing engine in Equation C26, the Board obtains 

the post-shock prices of individual securities, which are used in Equation C24 to compute post-

shock values of the representative portfolios.68  Finally, market value haircuts are computed 

using Equation C22.  

This approach is not feasible for all products due to limited data availability.  For 

products with lack of data (e.g., wholesale loans, ABS credit card and student loans, and 

portfolios with ratings lower than BBB), shocks are computed using multipliers and mappings as 

described in Section C.iii.1.d. 

3. Assumptions and Limitations 

Model-estimated correlations are assumed to reflect behavior under market stress.  

Models using the copula framework rely on estimating a correlation matrix of innovations.  

These correlations are based on long time series of data that capture a range of both stressed and 

non-stressed conditions.  While numerous studies suggest that correlations between asset price 

movements are linked to crisis behavior (e.g., Junior and Franca, 2012), more recent samples 

might better reflect current market conditions.69  The Board attempts to mitigate this risk by 

regularly assessing the current environment to make sure that the estimated models behave 

according to expectations.  In the case that model estimation results do not adhere to 

expectations, the Board may apply overrides to model results to reflect the desired conditions.  

 
68 If 𝚫𝑺𝒊

S falls within grid points, linear interpolation is used to compute the post-shock price.  To illustrate, assume 

that  𝚫𝒔𝟏 < 𝚫𝑺𝒊
S < 𝚫𝒔𝟐, where  𝚫𝒔𝟏 and 𝚫𝒔𝟐 are grid points (i.e., 𝚫𝒔𝟏, 𝚫𝒔𝟐 ∈ {𝟏𝟎𝟎, 𝟐𝟎𝟎, 𝟓𝟎𝟎, 𝟏𝟎𝟎𝟎, ⋯ }).  Let 

𝑷𝒊
S(post-shock) = 𝒇𝒊,pre-shock(𝑺𝒊

S(pre-shock) + 𝚫𝒔𝟏) +
(𝚫𝑺𝒊

S−𝚫𝒔𝟏)

(𝚫𝒔𝟐−𝚫𝒔𝟏)
[𝒇𝒊,pre-shock(𝑺𝒊

S(pre-shock) + 𝚫𝒔𝟐) −

𝒇𝒊,pre shock(𝑺𝒊
S(pre-shock) + 𝚫𝒔𝟏)].  If 𝝋𝒊 exceeds the maximum grid point (Δ𝒔max), the Board computes 

𝑷𝒊
S(post-shock) = 𝒇

𝒊,𝚫𝑺𝒊
S(𝑺𝒊

pre-shock
+ 𝚫𝒔max). 

69 See Junior, L.S. and I.D.P. France (2012): Correlation of Financial Markets in Times of Stress, Physica A: 

Statistical Mechanics and its Applications, 391(1-2), 187-208. 
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For circumstances that may represent structural shifts and therefore are likely to raise similar 

concerns in future stress test cycles, the Board may invest resources into developing models to 

account for such structural changes. 

When simulating shock values in the copula model, the secondary risk factor shock is 

assumed to be distributed evenly across the h-week horizon.  This is a simplifying assumption.  

The Board has tested other distributional assumptions (e.g., assuming that the entire shock is 

realized over the first week of the horizon) but did not pursue them because they had a small 

impact on simulated shock values. 

For products with credit ratings, the models assume, for simplicity, that securities do not 

undergo rating transitions, which is a reasonable assumption given the instantaneous nature of 

the global market shock component.  However, if ratings changes do occur, abstracting from 

rating transitions when generating shocks may understate (overstate) risk if ratings are 

downgraded (upgraded).  The Board prioritizes simple and tractable models and therefore 

accepts this limitation without attempts to mitigate the risk associated with it.  

The pricing of asset-backed securities does not account for collateral performance and 

interest-rate risk along the term structure.  The current approach may underestimate the market 

value haircuts that would occur under a combination of spread stresses and collateral 

performance degradation.  The stressed collateral performance assumptions could be set as 

judgmental parameters and would aid in further increasing the severity of the market value 

haircuts.  However, the magnitude of the haircuts, under the current approach, appear sufficiently 

severe.  Interest-rate risk is not stressed at different tenor points due to the structure of the vendor 

data.  This practice is inconsistent with the rates shocks produced by the global market shock.  
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The Board acknowledges this limitation and is planning to conduct future model development 

work to address this potential issue. 

For some risk factors, data limitations hinder the application of econometric models, such 

as the copula model or regressions.  In such cases, the Board applies simpler methods, such as 

mapping risk factors to other, similar, risk factors for which data exists.  Other methods involve 

averaging across multiple risk factors or using multipliers to link risk factors.  These approaches 

ignore the fact that relationships between risk factors may change over time and scenarios.  The 

Board therefore revises these methods on a continuous basis. 

iv. Alternative Modeling Choices 

The dependence among risk factor shocks (from primary to secondary, or from secondary 

to all remaining) can be modeled using a myriad of different models.  As part of an evaluation of 

models, the Board tested the performance of the models described above to that of other 

modeling choices.  These tests evaluate the abilities of the models to generate shocks that match 

the severeness of past crises given the available data and conditions at the crisis’ outset.  For 

example, the Board considers the 2007-2009 financial crisis, the European sovereign debt crisis, 

and the COVID-19 pandemic. 

The modeling choices can be varied in different dimensions.  One dimension is to replace 

all models—both those used to translate primary risk factor shocks to secondary risk factor 

shocks and those used to subsequently translate secondary risk factor shocks into shocks for all 

other risk factors—with simpler models, such as ordinary regressions.  The ordinary regression 

model, described in Section C.ii.1.c, is considered the simplest and most widely used statistical 

method.  This alternative model is thus in line with the Board’s stress test principle of simplicity.  

However, the Board generally finds that this alternative model would fail to generate sufficiently 
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severe shocks to reflect market distress and heightened uncertainty; that is, this model would fail 

to satisfy the purpose of the global market shock as discussed in Section A, because ordinary 

regression models predict the expected shock value given historical shock values in both normal 

and stressed times.  In contrast, models such as the copula model described in Section C.iii.1.a 

and the quantile regression model described in Section C.ii.1.a are designed to capture tail 

outcomes of the dependent variable. 

Another alternative approach would be the use of more complex models.  For example, 

the Board models secondary risk factors using univariate models (mainly, quantile regressions 

and quantile autoregressions), which characterize each risk factor independently from others.  As 

an alternative, this univariate modeling approach could be replaced by multivariate models that 

describe all risk factors within each asset class jointly.  This feature is more flexible and 

potentially captures broader risks than the application of univariate models, but it comes at the 

cost of having considerably more parameters that would need to be estimated.  More parameters 

both increase computational cost and impair the accuracy associated with estimation.   

The Board has tested the performance of two multivariate modeling frameworks for 

describing secondary risk factor shocks in order to better understand and weigh the effects of 

these tradeoffs.  First, the Board considers the copula model, which has multiple advantages as 

described in Section C.iii.1.a and is used for modeling the shocks to the remaining risk factors.  

Despite the flexibility of the chosen copula model, it does not capture time-variation in 

correlations across risk factors.  To test a model that captures this aspect, the Board considers the 

dynamic conditional correlation (DCC) model from Engle (2002) as a second multivariate 
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approach.70  The DCC model is designed to capture time-varying correlations between multiple 

time series.  It decomposes the conditional covariance matrix Ht, i.e., the variances and 

covariances of all risk factor shocks at time t given past realizations of risk factor shocks, as 

follows:  

Equation C33 – Decomposition of Conditional Covariance Matrix 

 𝑯𝒕 = 𝑫𝒕𝑹𝒕𝑫𝒕, 
 

where 𝑫𝒕 is a diagonal matrix with standard deviations from univariate GARCH models on the 

diagonal, and 𝑹𝒕 is a time-varying correlation matrix.71  Since the covariance matrix is time-

varying, this model captures that covariances in stressed times can be different from covariances 

in other times.  To generate scenarios reflecting market stress, the Board applied the covariances 

sampled from periods coinciding with past crises. 

In doing so, the Board found that using these multivariate methods to generate secondary 

risk factor shocks gives similar results as the chosen univariate models.72  Therefore, given the 

increased complexity and computational cost associated with these alternative models, the Board 

has determined that the chosen models are more appropriate methods.  

 
70 Engle, R. (2002): Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive 

Conditional Heteroskedasticity Models. Journal of Business & Economic Statistics, 20(3), 339–350. 

71 More specifically, 𝑫𝒕 = (

𝝈𝟏,𝒕 ⋯ 𝟎

⋮ ⋱ ⋮
𝟎 ⋯ 𝝈𝑵,𝒕

) with 𝝈𝒊,𝒕 for i=1,…,N described by the GARCH-t model in Equation 

C9, and 𝑹𝒕 = (

𝟏 ⋯ 𝝈𝑵,𝟏,𝒕

⋮ ⋱ ⋮
𝝈𝟏,𝑵,𝒕 ⋯ 𝟏

), where 𝝈𝒊,𝒋,𝒕 is a correlation parameter between risk factor i=1,…,N and risk 

factor j≠i. 

72 For example, the mean absolute error from fitting public equity returns during the Great Financial Crisis is only 4 

percent lower when using the multivariate DCC model compared with the univariate downside risk regression 

models. 
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v. Examples 

This section provides examples of estimated model parameters for certain key models—

i.e., quantile regression, downside-risk regression, quantile autoregression, the copula model, and 

the Nelson-Siegel model.  The examples are included to illustrate the different approaches 

numerically, rather than to report the full set of results comprehensively.  As the global market 

shock scenario involves thousands of risk factors, a comprehensive report of all estimated model 

parameters is not feasible.  

The examples focus on models for spread shocks to corporate bonds, returns on selected 

market indices, and the implied volatilities of selected equity index options.  These risk factors 

are chosen because their modeling approaches cover the key models listed above, and they 

involve relatively few model parameters to report.  Parameter estimates are reported for the 

global market shock component of the 2025 severely adverse scenario.  For this scenario, all 

models are estimated on data available up to the estimation cut-off date of June 28, 2024.  The 

Board chooses this cut-off date relative to the as-of date of the next stress test (October 11, 2024 

for the DFAST 2025 exercise) such that the two dates are both sufficiently close to one another 

to allow the parameter estimates to reflect the recent changes in the market environment and 

sufficiently distant from one another to allow the Board to make an initial assessment of its 

scenario choices prior to the as-of date. 

1. Quantile Regression 

As discussed in Section C.ii.1.a, quantile regression is the primary model used by the 

Board to generate shock values to secondary risk factors given primary risk factor shocks.  This 

section shows a numerical example for corporate credit bonds in developed markets.  As shown 

in Table C1, the primary risk factor is the Moody’s Baa-Aaa credit spread.  This factor is used to 
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generate shock values for two global corporate bond indices obtained from a third-party vendor: 

namely, a BBB-rated index and a BB-rated index. 

The data are monthly (end-of-month) spread changes, which are calculated from index 

option-adjusted spreads collected at the daily frequency from December 1996 to June 2024.  

Missing data are forward filled.73  Monthly spread changes are calculated by subtracting the 

previous month's end-of-month index spread from the current month's end-of-month index 

spread.  

Given these data points, the parameters of the quantile regression in Equation C1 given 

the 90th percentile are estimated using the algorithm from Koenker and D’Orey (1987).74  The 

90th percentile is chosen to reflect the severity of the shock value for the Baa-Aaa spread change 

used for the global market shock component of the 2025 severely adverse scenario, following the 

procedure outlined in Section B.ii.1.  Results are shown in Table C3.  The estimated coefficients 

reveal a positive and statistically significant relationship between the Baa-Aaa spread changes 

and the changes in the corporate credit bond market indices.  

  

 
73 That is any missing observation is populated by the most recently available data point. 

74 See Koenker, R., and D’Orey, V. (1987): Algorithm AS 229: Computing Regression Quantiles, 36(3), 383-393. 
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Table C3 – Estimated Coefficients for the Quantile Regression Describing the Corporate Bond 

Spreads in the Set of Secondary Risk Factor Shocks. 

 
The model is given by 𝑸𝟎.𝟗𝟎(𝒓𝒊,𝒕,𝟏

𝑺 |𝒓𝒊,𝒕,𝟏
𝑷 ) = 𝜶𝟎.𝟗𝟎 + 𝒓𝒊,𝒕,𝟏𝜷𝟎.𝟗𝟎, where 𝑸𝟎.𝟗𝟎(𝒓𝒊,𝒕,𝟏

𝑺 |𝒓𝒊,𝒕,𝟏
𝑷 ) is the 90th conditional 

percentile of the secondary risk factor shock, 𝒓𝒊,𝒕,𝟏
𝑺 , given the primary risk factor shock, 𝒓𝒊,𝒕,𝟏

𝑷 .  The 

primary risk factor shock is the Moody’s Baa-Aaa corporate credit spread.  The quantile regression is 

estimated at the 90th percentile for the 2025 global market shock component of the Severely Adverse 

scenario because the three-month Baa-Aaa corporate credit spread is chosen at a severity 

corresponding in the top 10th percentile of the distribution of historical data.  The data series are 

monthly option-adjusted spreads from December, 1996 to June, 2024.  Standard errors are reported in 

parentheses.  P-values (p) are indicated as follows: * p<0.10, ** p<0.05, *** p<0.01. 

 

 (i)  

BBB-rated 

index  

(ii)  

BB-rated index  

𝛼0.90 0.163*** 0.391*** 

 (0.015) (0.022) 

𝛽0.90 1.591*** 2.914*** 

 (0.125) (0.148) 

 

2. Downside Risk Regression 

The Board uses downside risk regressions to generate shocks to public equity secondary 

risk factors given the S&P 500 index return (see Table C1).  Secondary risk factors include the 

DAX index, the FTSE 100 index, and the Nikkei 225 index to represent developed markets, and 

the MSCI Emerging Market (EM) Latin America Index to represent emerging markets.  

The data are monthly (end-of-month) log-returns, which are calculated from index prices 

collected from a third-party vendor at the daily frequency May 1997 to June 2024.  Missing data 

are forward filled.  Monthly log-returns are computed by first-differencing the logarithm of end-

of-month index prices.  

Given these data points, the parameters of the downside risk regression in Equation C5 

are estimated using ordinary least squares.  The estimates are shown in Table C4.  The estimation 

results emphasize the co-movements of market returns, particularly during market declines.  The 
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positive and statistically significant estimates of 𝜸 imply that the secondary market index returns 

co-move with the S&P 500 index return more in market declines than in market rallies.  The 

parameter estimates are used in conjunction with a shock value for the S&P 500 index return to 

generate scenario shocks for the DAX, FTSE 100, Nikkei 225, and MSCI Emerging Market 

(EM) Latin America indices.  All shocks are reported as arithmetic returns.  These shocks are 

subsequently reviewed by the Board for plausibility and consistency with the scenario narrative.  

Table C4 – Estimated Coefficients for the Downside Risk Regressions Describing Equity Index 

Returns in the Set of Secondary Risk Factor Shocks. 

 
The model is given by 𝑬(𝒓𝒊,𝒕,𝟏

𝑺 |𝒓𝒕,𝟏
𝑷 ) = 𝜶 + 𝒓𝒕,𝒉

𝑷 𝜷 + 𝟏 𝒓𝒕,𝒉
𝑷 <𝟎𝜸, where 𝒓𝒕,𝟏

𝑷  is the one-month S&P 500 index 

return. The data series are monthly log returns from May 1997 to June 2024.  Standard errors are 

reported in parentheses.  P-values (p) are indicated as follows: * p<0.10, ** p<0.05, *** p<0.01. 

 

 

 

(i)  

DAX index 

(ii)  

FTSE 100 index 

(iii)  

Nikkei 225 index 

(iv)  

MSCI EM Latin 

America index 

𝛼 0.004 0.001 0.007* 0.006 

 (0.003) (0.002) (0.004) (0.006) 

𝛽 0.947*** 0.595*** 0.494*** 0.937*** 

 (0.092) (0.062) (0.104) (0.154) 

𝛾 0.251* 0.165* 0.507*** 0.617** 

 (0.145) (0.098) (0.165) (0.244) 

 

3. Quantile Autoregression 

For each public equity market, the Board publishes not only the spot shocks but also 

implied volatility shocks with tenors ranging from one month to three years.  These volatility 

shocks are the changes in the implied volatility level over the one-month liquidity horizon.  To 

ensure the consistency between spot and volatility shocks within each market, the Board uses 

quantile autoregressions that receive spot shocks as input as specified by Equation C3.  
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The dependent variables of the quantile autoregressions are the implied volatilities of 

secondary markets with one-month tenor.  For developed secondary market indices, the Board 

uses the price level and the at-the-money implied volatility level of the same index.  For the 

emerging secondary market index, the Board maps the MSCI Latin America index to Bovespa 

(Brazil) market volatility because Bovespa constitutes more than 50 percent of the regional 

index.  The Board collects these data series from a third-party vendor. 

The quantile autoregressions are estimated using monthly volatility data, which are 

calculated as end-of-month volatility observations with missing data treated by forward-filling 

along with monthly log-returns.  The data samples are May 1997 to June 2024 for the S&P 500 

index; January 2002 to June 2024 for the DAX and FTSE 100 indices; May 2004 to June 2024 

for the Nikkei 225 index; and March 2011 to June 2024 for the emerging market index. 

Results are shown in Table C5.  The results emphasize the persistence of implied 

volatility time series with the coefficients loading on past volatility (𝜷𝟎.𝟗𝟎) estimated close to 

one.  The results also show the dependence of market volatility on the underlying index returns, 

as the coefficients 𝝆𝟎.𝟗𝟎 are statistically significant for all indices.  These coefficients are 

estimated with a negative sign, consistent with more extreme (i.e., more negative) returns being 

associated with higher implied volatility.  
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Table C5 – Estimated Coefficients for the Quantile Autoregression Describing Equity Index 

Option One-Month (1M) Implied Volatilities in the Set of Secondary Risk Factor Shocks 

 
The model is given by 𝑸𝟎.𝟗𝟎(𝝈𝒊,𝒕

𝑺 |𝝈𝒊,𝒕−𝟏
𝑺 , 𝒓𝒊,𝒕,𝟏) = 𝜶𝟎.𝟗𝟎 + 𝒓𝒊,𝒕,𝟏𝜷𝟎.𝟗𝟎 + 𝝈𝒊,𝒕−𝟏

𝑺 𝝆𝟎.𝟗𝟎, where 𝑸𝟎.𝟗𝟎(𝝈𝒊,𝒕
𝑺 |𝝈𝒊,𝒕−𝟏

𝑺 , 𝒓𝒊,𝒕,𝟏) 

is the 90th conditional percentile of 𝝈𝒊,𝒕
𝑺   given 𝝈𝒊,𝒕−𝟏

𝑺  and the one-month return of the index underlying 

the option, 𝒓𝒊,𝒕,𝟏.  The data series are one-month implied volatilities at the monthly frequency from 

May 1997 (S&P 500), January 2002 (DAX and FTSE 100), May 2004 (Nikkei 225), or March 2011 

(CBOE Brazil ETF) to June 2024.   Standard errors are reported in parentheses.  P-values (p) are 

indicated as follows: * p<0.10, ** p<0.05, *** p<0.01. 

 

 (i)  

DAX 1M 

Implied 

Volatility 

(ii)  

FTSE 100 1M 

Implied 

Volatility 

(iii)  

Nikkei 225 1M 

Implied 

Volatility 

(iv)  

CBOE Brazil 

ETF 1M 

Implied 

Volatility 

(v)  

S&P 500 1M 

Implied 

Volatility 

𝛼0.90 0.035*** 0.041*** 0.060*** 0.020 0.042*** 

 (0.007) (0.002) (0.017) (0.027) (0.006) 

𝛽0.90 1.001*** 0.953*** 0.921*** 1.138*** 0.962*** 

 (0.064) (0.042) (0.164) (0.135) (0.053) 

𝜌0.90 -0.682*** -0.840*** -0.531*** -0.698*** -0.769*** 

 (0.038) (0.065) (0.133) (0.085) (0.070) 

 

4. Copula 

For an example of estimation results for the copula model, consider the developed market 

corporate credit bond spreads for which Section C.v.1 illustrated the generation of secondary risk 

factor shocks using the quantile regression.  The remaining risk factors within this group of 

securities are corporate bonds rated AAA, AA, A, B, and lower than B.  Shock values are 

generated by estimating the copula model explained in Section C.iii.1.a on weekly changes in 

credit spacings between various ratings.  Specifically, the copula model is estimated on the 

following spacings: AA-AAA, A-AA, BBB-A, BBB, BB-BBB, B-BB, and CCC-B.  

The data are weekly spacing changes computed from option-adjusted spreads on 

corporate bond indices with ratings from AAA to CCC.  These data series are sourced from a 

third-party vendor between January 1, 2005 and June 28, 2024 at the daily frequency.  First, daily 
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spacings are computed by taking the difference between index spreads with adjacent ratings.  

Then, the daily spacings are converted into weekly changes in spacings by differencing the 

spacings between Wednesdays.75   

The copula model is estimated in two steps.  First, the marginal model for each spacing, 

given by Equations C7 and C9, is estimated using maximum likelihood.  These parameter 

estimates are shown in Table C6.  The results show significant GARCH effects as the parameter 

loading onto past volatility in the GARCH Equation C9, 𝝓𝒊, is statistically significant for all 

spacings.  The estimation results also show the fat-tailed behavior of the data as the degree-of-

freedom parameter, 𝝂𝒊, is estimated in the range of about 2.5–4.76  In the second step, the 

parameters of the dependence structure, the joint degree-of-freedom parameter and covariance 

matrix (𝝂 and 𝜮 in Equation C12), are estimated.  These results are shown in Table C7.  

  

 
75 If Wednesday data is missing, the difference is taken as of Tuesday.  If Tuesday data is missing, the difference is 

taken as of Thursday.  If Thursday is also missing, the corresponding observation is dropped from the sample. 

76 For 𝜈𝑖 → ∞, the Student-t distribution converges to a normal distribution, which, by definition, does not feature 

fat tails. 



73                                      Model Documentation: Detailed Modeling Approach 

 

 

Table C6 – Estimated Coefficients for the GARCH-t Model Describing Corporate Bond Spacing 

Spreads. 

 
The model is given by 𝒓𝒊,𝒕 = 𝝁𝒊 + 𝜺𝒊,𝒕 , where 𝜺𝒊,𝒕 = 𝝈𝒊,𝒕𝒛𝒊,𝒕 with the GARCH-t model  𝝈𝒊,𝒕

𝟐 = 𝝎𝒊 + 𝝓𝒊𝝈𝒊,𝒕−𝟏
𝟐 +

𝝍𝒊𝜺𝒊,𝒕−𝟏
𝟐  and 𝒛𝒊,𝒕~𝒕(𝟎, 𝟏, 𝝂𝒊).  The GARCH-t model is estimated with variance targeting, introduced by Engle 

and Mezrich (1996), where the term 𝝎𝒊 is calculated as the unconditional sample variance multiplied by (𝟏 −
𝝍𝒊 − 𝝓𝒊).77  The data series are weekly spreads from January 1, 2005, to June 28, 2024.  Standard 

errors are reported in parentheses.  P-values (p) are indicated as follows: * p<0.10, ** p<0.05, *** 

p<0.01. 

 (i)  

AA-AAA 

(ii)  

A-AA 

(iii)  

BBB-A 

(iv)  

BBB 

(v)  

BB-BBB  

(vi) 

B-BB 

(vii) 

CCC-B 

𝜇𝑖 0.009 -0.053* -0.224*** -0.464*** -0.679** -0.629** -0.914** 

 (0.035) (0.031) (0.062) (0.118) (0.280) (0.244) (0.423) 

𝜔𝑖 0.511 0.117 0.489 1.747 7.953 9.514 17.271 

𝜓𝑖 0.340*** 0.201*** 0.198*** 0.294*** 0.180*** 0.213*** 0.087*** 

 (0.001) (0.001) (0.024) (0.005) (0.030) (0.016) (0.000) 

𝜙𝑖 0.647*** 0.787*** 0.779*** 0.684*** 0.788*** 0.757*** 0.903*** 

 (0.001) (0.002) (0.028) (0.006) (0.371) (0.017) (0.000) 

𝜈𝑖 3.112*** 3.583*** 3.084** 4.178*** 4.279*** 3.487*** 2.585*** 

 (0.191) (0.304) (1.271) (0.333) (0.418) (0.326) (0.062) 

 

 

Table C7 – Estimated Correlation Matrix and Degree of Freedom Parameter for the Copula 

Model of Corporate Bond Spacing Spreads 

 

The correlation matrix is estimated by using Kendall’s tau formula in Equation C14.  To 

determine the degrees-of-freedom parameter, bivariate copula models between all pairs of bond 

spacing spreads are first estimated.  The degrees-of-freedom estimate is the tenth percentile of 

estimated degree-of-freedom parameters from these bivariate copulas.  The data series are 

weekly spreads from January 1, 2005 to June 28, 2024.  The Board’s calibration of these 

parameters does not include measures for conducting inference, and standard errors are therefore 

not reported in the table. 

 

 AA-AAA A-AA BBB-A BBB BB-BBB  B-BB CCC-B 

AA-AAA 1 -0.034 0.107 0.218 0.122 0.147 0.141 

A-AA -0.034 1 0.288 0.632 0.417 0.336 0.264 

BBB-A 0.107 0.288 1 0.796 0.504 0.449 0.384 

BBB 0.218 0.632 0.796 1 0.643 0.527 0.442 

BB-BBB 0.122 0.417 0.504 0.643 1 0.524 0.422 

B-BB 0.147 0.336 0.449 0.527 0.524 1 0.303 

CCC-B 0.141 0.264 0.384 0.442 0.422 0.303 1 

Degrees of freedom: 

5.498 

      

 
77 See Engle, R., and Mezrich, J, (1996): GARCH for Groups. RISK, 9(8), 36-40 
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5. Nelson-Siegel Model 

The Nelson-Siegel model is used to generate shocks along the term structure as explained 

in Section C.iii.1.b.  For example, the Board uses the Nelson-Siegel model to generate shock 

values to implied volatilities of primary and secondary public equity indices for different tenors, 

given the one-month implied volatility shocks generated using quantile autoregression as 

explained in Section C.v.3.  For this purpose, the Nelson-Siegel model is estimated using daily 

at-the-money implied volatilities78 sourced at daily frequency from a third-party vendor.  Missing 

data points are forward filled.  The estimated decay parameter (𝝀𝒊) and the means and standard 

deviations of the estimated level, slope, and curvature factors are shown in Table C8.  The table 

also shows the coefficient from regressing the log-changes of the estimated level factors onto 

log-changes in one-month implied volatilities.  All parameters are statistically significant. 

  

 
78 That is the implied volatility of options for which the current market price of the underlying asset is close to or 

equal to the option’s strike price. 
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Table C8 – Estimation Results for the Nelson-Siegel Model Describing the Term Structures of 

Equity Index Option Implied Volatilities 

 
The table reports results for indices belonging to the set secondary risk factors, which comprise the estimation 

subset.  The model is given by 𝒑𝒊,𝒕(𝑻) = 𝑳𝒊,𝒕 + (
𝟏−𝒆−𝝀𝑖(𝑻−𝒕)

𝝀𝒊(𝑻−𝒕)
) 𝑺𝒊,𝒕 + (

𝟏−𝒆−𝝀𝒊(𝑻−𝒕)

𝝀𝒊(𝑻−𝒕)
− 𝒆−𝝀𝒊(𝑻−𝒕)) 𝑪𝒊,𝒕, where 𝝀𝒊 is the 

decay parameter and {𝑳𝒊,𝒕, 𝑺𝒊,𝒕, 𝑪𝒊,𝒕} are level, slope, and curvature factors.  The decay parameters are 

estimated separately for each market by numerical minimization of the sum of squared errors using implied 

volatility data sourced from a third-party vendor.  The public equity implied volatility model uses Variation B to 

generate post-shock values, which involves regressing log-changes in the estimated level factor 𝑳̂𝒊,𝒕 onto log-

changes in  𝒑𝒊,𝒕(𝒕 + 𝟏𝑴): 𝒍𝒐𝒈
𝑳̂𝒊,𝒕+𝟏

𝑳̂𝒊,𝒕
= 𝜷𝒊𝒍𝒐𝒈

𝒑𝒊,𝒕+𝟏(𝒕+𝟏𝑴)

𝒑𝒊,𝒕(𝒕+𝟏𝑴)
+ 𝜺𝒊,𝒕+𝟏.  The data series are at the daily frequency 

from May 1, 1997 (S&P 500), January 1, 2002 (DAX, FTSE 100, and Nikkei 225), or March 1, 2011 (CBOE 

Brazil ETF) to June 28, 2024, with maturities between one month and 30 years.  Robust standard errors, 

computed using numerical derivatives, are reported in parentheses.  P-values (p) are indicated as follows: * 

p<0.10, ** p<0.05, *** p<0.01.  The table also report the mean and standard deviations of the 

estimated level, slope, and curvature factors as of June 28, 2024 ({𝑳𝒊̅, 𝑺𝒊̅, 𝑪𝒊̅} and 

{sd(𝑳𝒊), sd(𝑺𝒊), sd(𝑪𝒊)}).  These factor time series are estimated by regressing the implied volatility data onto 

the factor loadings given the estimated decay parameter, for each day in the sample 

 

 (i)  

DAX 

(ii)  

FTSE 100 

(iii)  

Nikkei 225 

(iv)  

BOVESPA 

(v)  

S&P 500  

𝜆𝑖 3.577*** 3.474*** 5.647*** 5.225*** 1.471*** 

 (0.000) (0.047) (0.011) (0.098) (0.000) 

𝛽𝑖  0.078*** 0.072*** 0.060*** 0.131*** 0.083*** 

 (0.002) (0.003) (0.002) (0.011) (0.002) 

𝐿𝑖̅ 0.228 0.205 0.209 0.262 0.254 

𝑆𝑖̅ -0.031 -0.043 -0.003 -0.023 -0.089 

𝐶𝑖̅ -0.061 -0.087 -0.029 -0.045 -0.089 

sd(𝐿𝑖) 0.036 0.038 0.024 0.023 0.026 

sd(𝑆𝑖) 0.068 0.061 0.062 0.076 0.067 

sd(𝐶𝑖) 0.063 0.069 0.054 0.082 0.081 

 

D. Scenario Narrative Generation Tool  

As discussed in Section B.1, the Board uses supervisory experience and expertise, 

including forward-looking expert judgment and statistical analysis of historical data in the 

“scenario narrative” stage of the scenario design process.  This section describes one of the tools 

used to generate scenario narratives based on statistical analysis.79  This tool provides a set of 

 
79 Other tools are described in Section B.ii.1. 
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scenarios based on past firm vulnerabilities and historical co-movements of key risk factors 

across various asset classes during stressed times in history.  The Board may use this approach to 

generate a starting point for specifying scenario narratives.  This approach suggests scenario 

narratives based on past stressful events.  These past stressed times are identified based on firm 

vulnerabilities from FR Y-14Q submission data following the approach outlined in 

Abdymomunov, Duan, Hansen, and Misirli (2024, Section 3.4).80  The output of this analysis is a 

set of shock values to representative risk factors, which include but may not be limited to 

primary risk factors.  This output constitutes the basis for the formulation of scenario narratives.   

The shock values may, however, be adjusted further to account for emerging risks not captured 

by historical experience, as described in Section B.ii.1. 

i. Description and Rationale 

The approach has five parts: (i) identification of material risk factors to reduce the 

computational burden of analysis of the impact on profits and losses (P&L); (ii) hypothetical 

scenario generation using the historical simulation of material risk factors; (iii) selection of tail-

loss scenarios that can have large impacts across many historical positions and all firms included 

in the global market shock component of stress testing; (iv) identification of similarities between 

tail-loss scenarios using statistical techniques; and (v) evaluation of these tail-loss scenarios by 

the Board and development of scenario narratives.  This section describes these stages in detail. 

Step (i): The first step of the analysis involves identifying risk factors that are deemed 

material for the P&L impact analysis.  These material risk factors are identified for each asset 

class separately.  For operational feasibility, the P&L impact of each risk factor in an asset class 

 
80 See Abdymomunov, A., Z. Duan, A. L. Hansen, and E. U. Misirli (2024): Designing Market Shock Scenarios, 

Federal Reserve Bank of Richmond Working Paper Series, WP 24-17. 
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is estimated using firm-specific P&L sensitivities and standardized shock values, such as parallel 

shifts in yield curve of ±200 basis points or ±20 percent changes in spot exchange rates.  While 

these standardized shocks are arbitrarily chosen, they are sufficiently severe to approximate the 

relative contributions of each individual risk factor to the total P&L of all firms.  This method 

offers a first-order approximation of risk factors’ relative P&L impact contributions under stress.  

The risk factors are ranked according to the size of their P&L impact and gradually included in 

the set of material risk factors until cumulative P&L reaches a materiality threshold that reflects 

the balance between risk coverage and efficiency.81 

Step (ii): Next, shock values for the material risk factors are simulated jointly using 

historical simulation over a long sample that includes periods of major financial crises.  Given a 

calibration horizon of h months, the historical simulation uses h-month non-overlapping data or 

rolling-windows of h-month changes using daily data.  Simulated shock values that are 

unsuitable for current levels of the risk factors, in the sense that they result in unprecedented 

values, are filtered out.  For instance, historical realizations of the U.S. Treasury bond yield 

shocks that make post-shock rate levels negative are excluded from the simulated shocks.  The 

simulated material risk factor shocks that pass this soundness test form the distribution of 

generated scenarios.  

Step (iii): The third step selects scenarios from the set of historically simulated scenarios 

that have tail-loss impacts (i.e. large impacts across many historical positions and across all firms 

included in the global market shock component of stress testing).  P&L distributions are 

constructed for each asset class, firm, and period for which firm-specific P&L sensitivities are 

 
81 In an application to interest rates, Abdymomunov, Duan, Hansen, and Misirli (2024, Section 3.4) show that a 

materiality threshold of 70 percent identifies 12 interest rate curves.  Increasing interest rate risk capture to 80 

percent involves expanding the number of curves from 12 to 20; that is, the computational cost is large relative to 

the gain in the risk capture.  
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available.  This granularity of distributions ensures that (i) the model investigates scenario 

variation in less material asset classes; (ii) firms with small dollar exposures are included in 

scenario selection; and (iii) the model investigates the impact of future changes in firms’ trading 

book portfolios, assuming that historical P&L sensitivities capture such potential changes in 

portfolios.  Tail-loss scenarios are defined as those that result in losses below the first percentile 

of each firm’s P&L distributions pooled across time and firm observations.  The resulting set of 

scenarios covers vulnerabilities that are idiosyncratic for each firm or systematic for all firms. 

Step (iv): Due to the abundance of sensitivity data across firms and firm submissions, the 

set of tail-loss scenarios may be large, and some of the scenarios may be similar.  Hence, further 

reduction in the number of tail scenarios may be obtained by grouping similar scenarios and 

identifying representative scenarios.  K-means cluster analysis as proposed by MacQueen (1967) 

is applied for this purpose.82  This statistical method partitions observations into clusters to 

minimize the within-cluster variances.  Given these clusters, a representative scenario for each 

cluster is selected to ensure the tail losses scenarios are captured across firms.   

Step (v): Finally, the representative scenarios are evaluated and used to form scenario 

narratives.  The set of representative scenarios shows past firm vulnerabilities; hence, they can 

indicate potential risks and directions for material risk factors.  In the rates, commodities, and 

foreign exchange asset classes, for example, representative scenarios offer different directional 

risks, such as interest rates going up versus down, commodity prices going up versus down, and 

U.S. dollar appreciation versus depreciation against major currencies.  These scenarios become a 

 
82 See MacQueen, J. (1967): Some Methods for Classification and Analysis of Multivariate Observations, 

Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, 281–297. 
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reference point for evaluating emerging risks and developing scenario narratives that 

encompasses past firm vulnerabilities.  

ii. Assumptions and Limitations 

The approach assumes that the historical firm exposure data contains information on 

future risks.  However, future distributions of exposures may identify different scenario 

narratives than suggested by the approach given past data.  Similarly, the approach also assumes 

that historical simulation of risk factors represents potential future risks.  The Board addresses 

these limitations by using the scenario design narrative approach in combination with expert 

judgment, as discussed in Section B.ii.1. 

In step (ii), P&L impact is approximated using standardized shock values such as a 

parallel shift in the yield curve.  This approximation ignores non-parallel shifts in the curve, such 

as a yield curve steepening.  The standardized shock values simplify the evaluation of P&L 

impact.  As the approximated P&L impact is only used to identify material risk factors, and not 

for generating final results, the Board considers this simplification reasonable. 

In step (iv) of the approach, the set of tail-loss scenarios are reduced using cluster 

analysis.  While cluster analysis offers a statistical approach to group similar scenarios, it may 

overlook certain risks that only show up in a single period or for a single firm.  To mitigate this 

risk, the Board compares the P&L impact of the final set of scenarios with the P&L impact of all 

tail-loss scenarios.  

E. Scenario Design Process Limitations and Alternatives 

This section discusses limitations and alternatives related to the overall scenario design 

process at a broad level.  Limitations and alternatives related to the specific modeling choices are 

addressed for each modeling component throughout Sections C and 0.  The main limitations to 
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the overall scenario design process include: (1) the instantaneous nature of the global market 

shock; (2) limitations related to the choice of horizons over which scenario shocks are calibrated;  

and (3) limitations imposed by the global market shock template.  This section elaborates on 

these limitations and discusses potential alternatives.  While the Board acknowledges that the 

approach to the global market shock scenario design involves limitations, the Board has 

considered its resources and overarching policies to arrive at a sensible, yet feasible, design 

process. 

i. Instantaneous vs. Dynamic Global Market Shocks  

The global market shock scenario assumes that firms cannot change their position over 

asset-specific liquidity horizons.  This assumption is implemented as if shocks, which are 

calibrated over assumed shock liquidity horizons, occur instantaneously.  This design choice is 

motivated by the simplicity of implementation for firms in measuring shock impacts, and by the 

comparability of market losses across firms by avoiding the need to make assumptions regarding 

exposure dynamics during shock horizons.  However, this choice ignores potential changes in 

trading positions due to the expiration of derivative contracts or trading risk management 

strategies.  For example, an instantaneous global market shock scenario may result in unrealistic 

profits and losses if an instantaneous shock, which is calibrated to a one-month horizon, is 

applied to a position that will expire in 10 days.  

The alternative to the instantaneous global market shock would be to dynamically model 

shocks through multiple time periods and assume that positions could change over that period.  

In this alternative, the Board would provide a common, quantitative method for deriving 

dynamic shocks.  Firms would be required to apply appropriate horizon shocks to each position 
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in their trading book.  Using this alternative, the Board would mitigate the potential problem of 

implausible trading gains or losses from longer horizon shocks to short-dated positions.   

The alternative would require firms to scale a base market shock into a position-based 

shock according to the remaining contractual term of each trade, so that firms could recognize 

the short-dated nature of their positions.  This could, e.g., be implemented by scaling shocks 

using a square root of time rule.  As a result, this alternative would also require changes to FR Y-

14Q instructions and to firms’ models so that they could estimate their profits and losses.  Since 

the Board does not have the profits and losses estimated under the dynamic approach, the impact 

of this approach is unknown.  While this alternative could resolve potential problems of 

implausible trading gains or losses, it has drawbacks.  It adds implementation complexity and 

reduces comparability across firms due to the differences in firms’ assumption on position 

dynamics.  Since each firm would use its own adjustments to the market shocks for different 

contractual terms according to its firm-specific exposures, such adjustments could be 

independent of one another across firms.  Under these circumstances, the Board would not be 

able to ensure uniformity in evaluating these adjustments.  

ii. Calibration Horizon Granularity 

The global market shock framework uses calibration horizons of one month for liquid 

asset classes and of three months for illiquid asset classes.  These horizon choices are within the 

one-quarter horizon used for global market shock loss recognition in the stress capital buffer 

projections. 

The horizons over which global market shock values are calibrated are determined 

separately for each asset class, but risk factors within each asset class are calibrated over the 

same horizon.  Although the set horizons follow FRTB closely, there are differences arising from 
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the fact that the FRTB determines horizons at a more granular level that allows for different 

horizons within each asset class.  For example, the FRTB differentiates shock liquidity horizons 

to equity risk factors between two weeks and three months and credit risk factors between one 

and six months.  In contrast, the global market scenario framework assigns a one-month liquidity 

horizon for all equity risk factors and a three-month horizon for all credit risk factors.  

Allowing for different horizons within asset classes would necessitate a substantial 

change to the existing model structure and require additional layers of complexity that may 

outweigh the benefits and could conflict with the Board’s stress test principle of simplicity.  If 

undertaken, further alignment with FRTB would create additional burden for the Board due to 

the creation of new risk factor categories and the changes to the modeling framework.  Firms 

would also be affected by these changes, as updates to Y14-Q instructions and firms’ modeling 

methods would be needed.   

iii. Missing Risks and Global Market Shock Scenario Simplification 

The global market shock template covers most of the exposures to which firms have 

trading and counterparty credit vulnerabilities.  However, the template is not granular enough to 

differentiate shocks to certain risk factors and to capture basis risks.  For example, all U.S. equity 

spot risk factors are represented by a single shock to S&P 500 index.  This practice may miss 

basis risk that arises from different shocks to concentrated positions in individual stocks or in 

industry sectors.  To address this issue, the Board could add additional risk factors that would 

capture material basis and concentration risks that the current template does not.  

At the same time, the global market shock template includes many risk factors, some of 

which may not improve the risk capture of the global market shock.  The Board is therefore 

proposing to simplify the global market shock template, as described in detail below.  
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The immaterial risk factors were introduced as part of the original global market shock 

template, but over time risk profiles changed, and the Board has confirmed their limited risk 

capture in recent stress tests.  The Board continued to publish these immaterial risk factors so 

that firms can easily use the original global market shock template in their operational systems.  

Yet, modeling these risk factors is burdensome and resource consuming for the Board because it 

involves maintaining additional data sets and models and performing additional qualitive 

assurance checks.  

To align with the principle of simplicity and overcome the additional burden, the Board is 

proposing to substantially reduce the number of disclosed risk factors in the template, including 

relative shocks, and to increase the use of mapping, as described on p. 46, for non-disclosed risk 

factors.  The Board would provide instructions for how this reduced set of shocks maps to most 

of the risk factor shocks contained in the original global market shock template.  For example, in 

equity, the original template differentiated shocks for 23 advanced economy regions along with a 

shock for all “other cross-country indices” and “other advanced economies.”  In the simplified 

template, the number of differentiated shocks would be smaller, and the “other” categories would 

cover a broader set of risk factors.  For volatility term structures, the simplified template may 

differentiate term structure shocks up to a tenor of three years, providing a single shock for 

tenors greater than or equal to three years for each term structure.  All risk factors are therefore 

still captured under the simplified framework.  The Board seeks public comments on its 

simplification approach. 

Under this simplification approach, the Board would consider the materiality of the risk 

factors measured by P&L from firms’ trading activity.  Specifically, the Board would ensure that 

material risk factors are maintained in the global market shock template.  The Board would also 
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consider the importance of the risk factors for characterizing scenario narratives.  The simplified 

template would therefore maintain risk factors that are categorized as primary and secondary.  

One example of such risk factors is the gold spot price shock, which is an indicator of market 

stress that the Board often cites in the scenario narrative, but for which firm exposures have 

historically been relatively small.  Another example of a risk factor with lower materiality (in 

terms of aggregate P&L) that is important to characterize scenario narratives is the exchange rate 

between U.S. dollar and Japanese Yen. 

Another consideration is maintaining consistency across asset classes.  In this regard, 

where possible, the Board would generate shocks for the same set of countries, regions, and tenor 

points across different asset classes.  For example, the template would include shock values for 

the same set of tenors for term structures in the equity, FX, and commodity asset classes.  Such 

consistency would simplify risk factor comparison across different asset classes and help the 

Board to communicate its scenario narratives more effectively to the public.  Finally, the Board 

would consider data quality and the availability of data such that the template maintains risk 

factors for which high-quality data is available, unless these risk factors are material, important 

for the scenario, or serve to ensure consistency across asset classes.  For example, high-quality 

data may not be available for thinly traded securities.  In addition, for some assets, such as 

certain securitized products, data may not be available at all, as these products have not been 

actively traded since the Global Financial Crisis.   

Although the Board would provide instructions for all risk factors under the simplified 

approach, the simplification may involve a loss of risk capture by not differentiating all risk 

factor shocks.  The Board has evaluated the impact of simplification on P&L of firms’ trading 

activities, finding that the loss impact is immaterial.  
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An important consideration of simplification is the operational burden for firms to adjust 

their production processes to the changed template.  To mitigate this burden and give firms 

sufficient time to operationalize the change, the Board would publish the undisclosed shocks for 

the 2026 stress test scenario in the same file format as was done for the 2025 stress test and map 

the undisclosed risk factors to the disclosed ones.  In the 2026 stress test scenarios, there are 

approximately 2,300 disclosed risk factors, which are published in a separate template for ease of 

disposition among the 2026 stress test scenario materials.  The Board proposed to publish only 

the disclosed risk factors used in future stress test scenarios, in the shorter-form template, for the 

2027 stress test and beyond.  

 


