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Abstract. A continuous distribution of agents that face a piecewise-linear schedule of incentives results
in a distribution of responses with mass points located where the slope (kink) or intercept (notch) of
the schedule changes. Bunching methods use these mass points to estimate an elasticity parameter,
which summarizes agents’ responses to incentives. This article introduces the command bunching, which
implements new non-parametric and semi-parametric identification methods for estimating elasticities
developed by Bertanha et al. (2021). These methods rely on weaker assumptions than currently made
in the literature and result in meaningfully different estimates of the elasticity in various contexts.
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1 Introduction

Mass points in the middle of a univariate distribution, often called bunching, have been used to estimate
parameters that govern behavioral responses to changes in incentives. For example, bunching has been used
to estimate the elasticity of taxable income with respect to the net of tax rate using piecewise linear tax
schedules. These methods began with Saez (2010), Chetty et al. (2011), and Kleven and Waseem (2013).
Following these influential papers, bunching became a popular method for estimating responses to incentives
with cross sectional data.

Bunching estimators are widely applied in settings including fuel economy regulations (Sallee and Slem-
rod 2012), electricity demand (Ito 2014), real estate taxes (Kopczuk and Munroe 2015), labor regulations
(Garicano et al. 2016), prescription drug insurance (Einav et al. 2017), marathon finishing times (Allen et al.
2017), attribute-based regulations (Ito and Sallee 2018), education (Dee et al. 2019; Caetano et al. 2020a),
minimum wage (Jales 2018; Cengiz et al. 2019), and air-pollution data manipulation (Ghanem et al. 2019),
among others. Variation in the size of the mass point across groups of individuals has also been used as a
first stage in a two-stage approach to control for endogeneity (Chetty et al. 2013; Caetano 2015; Grossman
and Khalil 2020). Bunching has also been used for causal identification in Khalil and Yildiz (2020), Caetano
and Maheshri (2018), Caetano et al. (2019), and Caetano et al. (2020b). Kleven (2016) reviews the many
applications and branches of the bunching literature and Jales and Yu (2017) relates bunching to regression
discontinuity design (RDD).

This paper introduces a new Stata command, bunching, which utilizes assumptions that are weaker than
current methods for partial and point identification of the bunching elasticity. The command bunching is a
wrapper function for three other commands. The first of those commands is bunchbounds, which estimates
upper and lower bounds on the bunching elasticity using a partial-identification approach. The second is
bunchtobit, which uses a semi-parametric method with covariates for point identification. The third is
bunchfilter, which filters friction errors from the dependent variable before applying either bunchbounds
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or bunchtobit.

The statistical foundations for these commands are developed in Bertanha et al. (2021). That paper
introduces a suite of ways to recover elasticities from bunching behavior. Each method differs in the assump-
tions it makes in order to achieve identification of the bunching elasticity. There is no way to determine
which assumption is correct because these are assumptions about an unobserved distribution. Nevertheless,
estimates that are stable across many methods indicate that different identifying assumptions do not play a
major role in the construction of those estimates. On the contrary, estimates that are sensitive to different
assumptions are dependent on the validity of those assumptions. Therefore, we recommend that researchers
use the bunching package to examine the sensitivity of elasticity estimates across all available methods as a
matter of routine.

2 Bunching estimators

A continuous distribution of agents that face a piecewise-linear schedule of incentives results in a distribution
of responses with mass points located where the slope of the schedule changes, also called a “kink”. For
example, a progressive schedule of marginal income tax rates induces a mass of heterogeneous individuals to
report the same income at the level where marginal rates increase (Saez 2010).

Agents maximize an iso-elastic quasi-linear utility function which results in a data generating process
(DGP) for optimal reported income as follows

yi =


εs0 + n∗i , if n∗i < n (k, ε, s0)

k, if n (k, ε, s0) ≤ n∗i ≤ n (k, ε, s1)

εs1 + n∗i , if n∗i > n (k, ε, s1) .

(1)

in which yi = log(Yi) is the natural log of reported income, n∗i = log(N∗
i ) is unobserved heterogeneity of

agent i, ε is the elasticity parameter of interest, and the slope of the piecewise-linear constraint changes
from s0 to s1 at the kink, k. The expressions for the thresholds that determine the three cases in (1) are
n (k, ε, s0) = k − εs0 and n (k, ε, s1) = k − εs1. In the original tax application, sj = log(1 − tj), j ∈ {0, 1},
in which tj is the marginal tax rate and t0 < t1.

Equation 1 maps the continuously distributed unobserved n∗i into a mixed continuous-discrete observed
distribution for yi for given values of (s0, s1, k, ε). For higher values of n∗i , higher values of yi will be observed
except when n∗i falls inside the bunching interval [n (k, ε, s0) , n (k, ε, s1)], in which case yi remains constant
and equal to k. Therefore, (1) leads to bunching in the distribution of yi at the kink point k. In other words,
the distribution of yi has a mass point at k, P(yi = k) > 0, but is continuous otherwise. The mass of the
point at k depends on the size of the interval that defines bunching according to

B ≡ P (yi = k) = P (n (k, ε, s0) ≤ n∗i ≤ n (k, ε, s1)) (2)

= Fn∗ (n (k, ε, s1))− Fn∗ (n (k, ε, s0)) ,

in which Fn∗ is the cumulative distribution function (CDF) of the unobserved n∗.

Formally, the data and model comprise five objects: 1) the CDF of the outcome Fy, 2) the kink point k,
3) the slopes of the piecewise-linear constraint s0 and s1; 4) the CDF of the latent variable Fn∗ , and 5) the
elasticity ε. Equation 1 is a mapping that takes objects (2)–(5) and maps them into the observed CDF, Fy.
The researcher observes objects (1)–(3), but does not observe the last two objects, Fn∗ and ε.

Intuition for how the original bunching estimators estimate ε is as follows. First, they assume a specific
function Fn∗ over the bunching interval. Second, they invert equation 2 to recover ε using their assumption
about Fn∗ . The methods developed by Bertanha et al. (2021) that are implemented by the bunching

command are quite different than these original approaches.

bunching implements two novel identification strategies for the elasticity using a mass point at a kink
when that kink is not preceded by a notch (a discontinuity in the level of the incentive schedule). The
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first strategy identifies upper and lower bounds on the elasticity —partially identifies the elasticity —by
making a mild shape restriction on the non-parametric family of heterogeneity distributions Fn∗ . The second
strategy point identifies the elasticity using covariates and a semi-parametric restriction on the distribution
of heterogeneity.

The first strategy, which is implemented by bunchbounds, partially identifies the elasticity by assuming
a bound on the slope magnitude of the heterogeneity probability density function (PDF), that is, Lipschitz
continuity. Intuition for identification of the elasticity in this setting is as follows. We observe the mass of
agents who bunch, which equals the area under the heterogeneity PDF inside an interval. The length of this
bunching interval depends on the unknown elasticity. The maximum slope magnitude of the PDF implies
upper and lower bounds for all possible PDF values inside the bunching interval that are consistent with
the observed bunching mass. This translates into lower and upper bounds, respectively, on the size of the
bunching interval, which corresponds to lower and upper bounds on the elasticity. The partial-identification
approach has valuable features, among these are that observed bunching always implies a positive elasticity
and the original bunching estimator is always inside the partially identified set.

The second strategy, which is implemented by bunchtobit, is a semi-parametric method that relies on the
fact that bunching can be rewritten as a middle-censored regression model. The likelihood function assumes
that the unobserved distribution conditional on covariates is parametric, but we demonstrate that correct
specification of the conditional distribution is not necessary for consistency, as long as the unconditional
distribution is correctly specified. For example, conditional normality yields a mid-censored Tobit model,
which has a globally concave likelihood and is easy to implement. Nevertheless, consistency only requires
that the unobserved distribution is a semi-parametric mixture of normals, and conditional normality is not
necessary. Truncating the sample around the kink point improves the fit of the model and further weakens
these distributional assumptions. The semi-parametric censoring model extends bunching estimators to
control for observable heterogeneity for the first time. Observable individual characteristics generally account
for substantial variation across agents and leave less heterogeneity unobserved. This fact suggests that
identification strategies that utilize covariates should be preferred over identifying assumptions that only
restrict the shape of the unobserved distribution without covariates.

Many datasets have friction errors which are defined as when the bunching mass is dispersed in a small
interval near, instead of exactly at, the kink. When friction errors are present, they must first be filtered
out before a bunching estimation method can be applied. The procedure implemented by bunchfilter is
a practical way of removing friction errors and works well when 1) the researcher has an accurate prior on
the support of the friction error distribution, 2) the friction error affects bunching individuals more than
non-bunching individuals, or 3) the variance of the friction error is small. A more general filtering method
requires deconvolution theory, which is an active area of research.

3 The bunchbounds command

bunchbounds uses bunching to partially-identify the elasticity of income with respect to tax rate. The general
syntax of this command is as follows:

Syntax

bunchbounds varname
[
if
] [

in
] [

weight
]
, kink(#) m(#) tax0(#) tax1(#)

[
nopic

saving(string)
]

varname must be one dependent variable (ln of income), covariates are optional.

if|in like in any other Stata command, to restrict the working sample.

The main command-specific estimation and postestimation options are provided below and are expanded
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in the bunchbounds help file. Entries for the first four options, kink(#real), m(#real), tax0(#real),
and tax1(#real), are required whereas options inside the square brackets are not required.

The user enters the name of the income variable (in natural logs), the location of the kink point, the
maximum slope magnitude m of the heterogeneity PDF, and the marginal tax rates before and after the kink
point. The code computes the maximum and minimum values of the elasticity that are consistent with the
slope restriction on the PDF and the observed distribution of income. The code gives suggestions of m values
based on the continuous part of the distribution, as the true value of m is unknown. The minimum and
maximum values of m in the data are constructed from a histogram of the dependent variable that excludes
the kink point and use the same default binwidth as bunchtobit. If that histogram happens to be too
undersmoothed, the maximum value of m in the data might be too high (and vice-versa).

Options for bunchbounds

kink(#real) is the location of the kink point where tax rates change.

m(#real) is the maximum slope magnitude of the heterogeneity PDF, a strictly positive scalar.

tax0(#real) is the marginal income tax rate before the kink point.

tax1(#real) is the marginal tax rate after the kink point, which must be strictly bigger than tax0.

* nopic if you state this option, then no graphs will be displayed. Default state is to have graphs displayed.

* saving (string [, replace]) gives you the option to save a *.dta file with (x,y) coordinates of the
graph of the partially-identified set as a function of the slope magnitude of the heterogeneity distribution.
Use saving(filename.dta) or saving(filename.dta, replace) if filename.dta already exists in the
working directory.

Only fweight or fw (frequency weights) are allowed; see help file for option weight in Stata. Options marked
by “*” are not required.

4 The bunchtobit command

bunchtobit uses bunching, Tobit regressions and covariates to point identify the elasticity of income with
respect to tax rates. The general syntax of the command is as follows:

Syntax

bunchtobit varname
[
if
] [

in
] [

weight
]
, kink(#) tax0(#) tax1(#)

[
grid(numlist) verbose

numiter(#) binwidth(#) nopic saving(string)
]

varname must be one dependent variable (ln of income), covariates are optional.

if|in like in any other Stata command, to restrict the working sample.

The main command-specific estimation and postestimation options are provided below and are ex-
panded in the bunchtobit help file. Entries for the first three options, kink(#real), tax0(#real), and
tax1(#real), are required whereas options inside the square brackets are not required.

The user enters the name of the income variable (in natural logs), the names of explanatory variables,
the location of the kink point, the marginal tax rates before and after the kink point. The code runs a
sequence of mid-censored Tobit regressions using different sub-samples of the data. It starts with the entire
sample, then it truncates the value of the income variable in shrinking symmetric windows centered at the
kink point. The elasticity estimate is plotted as a function of the percentage of data used by the truncation
windows. The code also plots the histogram of the income variable along with the best-fit Tobit distribution
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for each truncation window.

Options for bunchtobit

kink(#real) is the location of the kink point where tax rates change.

tax0(#real) is the marginal income tax rate before the kink point.

tax1(#real) is the marginal tax rate after the kink point, which must be strictly bigger than tax0.

* grid(numlist) grid with integer numbers between 1 and 99. The number of grid points determines the
number of symmetric truncation windows around the kink point on which the Tobit regressions are run.
The value of the grid points correspond to the percentage of the sample that is selected by each truncation
window. The code will always add 100 (full sample) to the grid, so the number of grid points is always
one more than the number of grid points provided by the user. The default value for the grid is 10(10)90.

* verbose if provided, this option makes the code display detailed output of Tobit regressions and likelihood
iterations. Non-verbose mode is the default.

* numiter(#int) maximum number of iterations for likelihood maximizations of Tobit regressions. Default
is 500.

* binwidth(#real) the width of the bins for histograms. Default value is half of what is automatically
produced by the command histogram. A strictly positive value.

* nopic if you state this option, then no graphs will be displayed. Default state is to have graphs displayed.

* saving(string [, replace]) gives you the option to save a *.dta file with Tobit estimates for each
truncation window. The *.dta file contains eight variables corresponding to the matrices that the
code stores in r(). See below for more details. Use saving(filename.dta) or saving(filename.dta,

replace) if filename.dta already exists in the working directory.

Only fweight or fw (frequency weights) are allowed; see help file for option weight in Stata. Options marked
by “*” are not required.

5 The bunchfilter command

bunchfilter filters out friction errors of data drawn from a mixed continuous-discrete distribution with
one mass point plus a continuously distributed friction error. The distribution of the data with error is
continuous and its PDF typically exhibits a hump around the location of the mass point. This type of data
arises in bunching applications in economics, for example, the distribution of reported income usually has a
hump around the kink points where marginal tax rate changes. The general syntax of this command is as
follows:

Syntax

bunchfilter varname
[
if
] [

in
] [

weight
]
, generate(varname) deltam(#) deltap(#) kink(#)[

nopic binwidth(#) perc obs(#) polorder(#)
]

varname must be one dependent variable (ln of income), covariates are optional.

if|in like in any other Stata command, to restrict the working sample

The main command-specific estimation and postestimation options are provided below and are expanded
in the bunchfilter help file. Entries for the first four options, generate(newvar), deltam(#real),
deltap(#real), and kink(#real), are required whereas options inside the square brackets are not re-
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quired.

The user enters the variable to be filtered (e.g., ln of income), the location of the mass point, and
length of a window around the mass point that contains the hump (i.e., kink - deltam, kink + deltap).
The procedure fits a polynomial regression to the empirical CDF of the variable observed with error. This
regression excludes points in the hump window and has a dummy for observations on the left or right of the
mass point. The fitted regression predicts values of the empirical CDF in the hump window with a jump
discontinuity at the mass point. The filtered data equals the inverse of the predicted CDF evaluated at the
empirical CDF value of each observation in the sample.

This procedure works well for cases where the friction error has bounded support and only affects obser-
vations that would be at the kink in the absence of error. A proper deconvolution theory still needs to be
developed for a filtering procedure with general validity.

Options for bunchfilter

generate(newvar) generates the filtered variable with a user-specified name of varname. If this option is
used, then options deltam and deltap must also be specified.

deltam(#real) is the lower half-length of the hump window, that is, the distance between the mass point
to the lower-bound of the hump window. If this option is used, then options generate and deltap must
also be specified.

deltap(#real) is the upper half-length of the hump window, that is, the distance between the mass point
to the upper-bound of the hump window. If this option is used, then options generate and deltam must
also be specified.

kink(#real) is the location of the mass point.

* nopic if you state this option, then no graphs will be displayed. Default state is to have graphs displayed.

* binwidth(#real) the width of the bins for histograms. Default value is half of what is automatically
produced by the command histogram. A strictly positive value.

* perc obs(#real) for better fit, the polynomial regression uses observations in a symmetric window
around the kink point that contains perc obs percent of the sample. Default value is 40, (integer, min
= 1, max = 99).

* polorder(#integer) maximum order of polynomial regression. Default value is 7, min = 2; max = 7.

Only fweight or fw (frequency weights) are allowed; see help file for option weight in Stata. Options marked
by “*” are not required.

6 The bunching command

The Stata command bunching is a wrapper function for three other commands: bunchbounds, bunchtobit,
and bunchfilter.

Syntax

bunching varname
[
indepvars

] [
if
] [

in
] [

weight
]
, kink(#) tax0(#) tax1(#) m(#)

[
generate(varname) deltam(#) deltap(#) perc obs(#) polorder(#) grid(numlist)

numiter(#) verbose savingbounds(string) savingtobit(string) binwidth(#) nopic
]

varname must be one dependent variable (ln of income), covariates are optional.
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if|in like in any other Stata command, to restrict the working sample.

The main command-specific estimation and postestimation options are provided below and are expanded
in the bunching help file. Entries for the first four options, kink(#real), tax0(#real), tax1(#real),
and m(#real) are required whereas options inside the square brackets are not required.

Options for bunching

kink(#real) is the location of the mass point.

tax0(#real) is the marginal income tax rate before the kink point.

tax1(#real) is the marginal tax rate after the kink point, which must be strictly bigger than tax0.

m(#real) is the maximum slope magnitude of the heterogeneity PDF, a strictly positive scalar (option of
bunchbounds).

* generate(newvar) generates the filtered variable with a user-specified name of varname (option of
bunchfilter). If this option is used, then options deltam and deltap must also be specified.

* deltam(#real) is the lower half-length of the hump window, that is, the distance between the mass point
to the lower-bound of the hump window (option of bunchfilter). If this option is used, then options
generate and deltap must also be specified.

* deltap(#real) is the upper half-length of the hump window, that is, the distance between the mass
point to the upper-bound of the hump window (option of bunchfilter). If this option is used, then
options generate and deltam must also be specified.

* perc obs(#real) for better fit, the polynomial regression of bunchfilter uses observations in a sym-
metric window around the kink point that contains perc obs percent of the sample. Default value is 40,
(integer, min = 1, max = 99).

* polorder(#integer) maximum order of polynomial regression of bunchfilter. Default value is 7, min =
2; max = 7.

* grid(numlist) grid with integer numbers between 1 and 99 (option of bunchtobit). The number of grid
points determines the number of symmetric truncation windows around the kink point, on which the
Tobit regressions are run. The value of the grid points correspond to the percentage of the sample that
is selected by each truncation window. The code will always add 100 (full sample) to the grid, so the
number of grid points is always one more than the number of grid points provided by the user. The
default value for the grid is 10(10)90.

* numiter(#int) maximum number of iterations for likelihood maximizations of Tobit regressions. Default
is 500.

* verbose if provided, this option makes the code display detailed output of Tobit regressions and likelihood
iterations. Non-verbose mode is the default.

* savingbounds(string [, replace]) gives you the option to save a *.dta file with (x,y) coordinates of
the graph of the partially-identified set as a function of the slope magnitude of the heterogeneity distri-
bution (option of bunchbounds). Use saving(filename.dta) or saving(filename.dta, replace) if
filename.dta already exists in the working directory.

* savingtobit(string [, replace]) gives you the option to save a *.dta file with Tobit estimates for
each truncation window. The *.dta file contains eight variables corresponding to the matrices that the
code stores in r(). See below for more details. Use saving(filename.dta) or saving(filename.dta,

replace) if filename.dta already exists in the working directory.

* binwidth(#real) the width of the bins for histograms of bunchfilter and bunchtobit. Default value
is half of what is automatically produced by the command histogram. A strictly positive value.
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* nopic if you state this option, then no graphs will be displayed. Default state is to have graphs displayed.

Only fweight or fw (frequency weights) are allowed; see help file for option weight in Stata. Options marked
by “*” are not required.

7 Examples with simulated data

In this section, we use simulated data to illustrate bunchbounds, bunchtobit, bunchfilter, and bunching.
First, we demonstrate the commands without friction errors. Second, we show how to remove the friction
errors as a precursor to estimating the relevant elasticity. These examples are motivated by the Earned
Income Tax Credit that is investigated by Saez (2010) and Bertanha et al. (2021). As such, sometimes we
refer to the simulated outcome data as “earnings” and the slope of the incentive schedule as “marginal tax
rates.” The units of the outcome also corresponds to log thousands of dollars.

7.1 Simulated data

We consider a data generating process from equation 1 with one kink at k = ln (8) given by

yi =


0.5 ln (1.3) + n∗i , if n∗i < ln (8)− 0.5 ln (1.3)

ln (8), if ln (8)− 0.5 ln (1.3) ≤ n∗i ≤ ln (8)− 0.5 ln (0.9)

0.5 ln (0.9) + n∗i , if n∗i > ln (8)− 0.5 ln (0.9),

(3)

in which the elasticity is ε = 0.5 and the slopes of the budget constraint to the left and right of the kink are
s0 = ln (1.3) and s1 = ln (0.9) (representing tax rates of t0 = −0.3 and t1 = 0.1). We assume that ability is
a function of covariates and unobserved error given by n∗i = 2− 0.2x1i + 2.5x2i + 0.4x3i + νi, νi ∼ N (0, 0.5).
The covariates x1, x2, and x3, are correlated binary variables with properties given in Table 1.

We simulate about one million weighted (100,000 unweighted) observations according to equation 3.
Frequency weights are drawn from a standard uniform distribution and demonstrate how to employ weights
throughout the bunching package. In Figure 1, we graph the histogram of the one million observations in 100
bins. The simulated outcome variable is bimodal due to the covariates and highlight that the unconditional
distribution is not normally distributed. The simulated data also exhibits bunching exactly at the kink point.
In many empirical applications the bunching mass is dispersed in a small interval near, instead of exactly
at, the kink. We provide a solution to this issue in Section 7.4.

Mean Std. Dev.
x1 0.2 0.4
x2 0.5 0.5
x3 0.3 0.46

Correlations
x1 x2 x3

x1 1
x2 0.2 1
x3 0.1 0.4 1

Table 1: Covariates’ proprieties

7.2 Estimating elasticity bounds

We begin by estimating the elasticity bounds using the location of the kink, (ln (8) = 2.0794, k(2.0794)),
tax rates on either side of the kink (tax0(-0.3) and tax1(0.1)), and a choice of the maximum slope (m(2)).

. ssc install bunching
checking bunching consistency and verifying not already installed...
installing into c:\ado\plus\...
installation complete.
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Figure 1: Histogram of simulated data

. webuse set "http://fmwww.bc.edu/repec/bocode/b/"
(prefix now "http://fmwww.bc.edu/repec/bocode/b")
. webuse bunching.dta

. bunchbounds y [fweight=w], k(2.0794) tax0(-0.3) tax1(0.1) m(2)

Your choice of M:
2.0000

Sample values of slope magnitude M
minimum value M in the data (continuous part of the PDF):
0.0000

maximum value M in the data (continuous part of the PDF):
0.3879

maximum choice of M for finite upper bound:
1.5923

minimum choice of M for existence of bounds:
0.0065

Elasticity Estimates
Point id., trapezoidal approx.:
0.4895

Partial id., M = 2.0000 :
[0.3914 , +Inf]

Partial id., M = 1.59 :
[0.4056 , 0.9385]

The bunchbounds command estimates the bounds for the elasticity using different slope values. First, the
output shows that we entered a maximum slope of 2 and the bounds for this slope are [0.3914,∞]. Second, the
command also estimates the bounds using the maximum slope for a finite upper bound, when the maximum
slope given is greater than that value. In this case, the maximum slope for a finite upper bound is 1.5923,
resulting in the bounds [0.4056, 0.9385]. In both cases, the true elasticity estimate of 0.5 is within these
bounds. The output also gives the estimated minimum and maximum slopes of the continuous portion of
the probability density function of the data. These slopes are 0 and 0.3879. The point-identified elasticity
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using the trapezoidal approximation (which is the Saez (2010) estimator) of 0.4895 is also provided.

The non-parametric bounds are also graphed by bunchbounds for different maximum slope magnitudes
of the unobserved heterogeneity PDF. These different slope magnitudes are plotted on the horizontal axis
and the corresponding bounds are plotted on the vertical axis. For this example, these are given in Figure 2a.
This figure shows how the upper bound, depicted as a dashed line, increases and the lower bound, depicted
as a solid line, decreases as the maximum slope increases. The vertical lines in Figure 2a at 0.01 and 1.59
denote the minimum slope for the existence of the bounds and the maximum slope for a finite upper bound,
respectively. The point identified elasticity using the trapezoidal approximation occurs where the bounds
come together —the dash-dot horizontal red line in Figure 2a.

The bunchbounds command can also be combined with conditional statements that restricts to subsam-
ples of the data based on values of different covariates. For example, bunchbounds y if x1==1 & x3==0

[fw=w], k(2.0794) tax0(-0.3) tax1(0.1) m(2) estimates the bounds when x1 = 1 and x3 = 0. Re-
stricting to subsamples when x1 = 1 or x1 = 0 have similar syntaxes. The output from these commands
(not shown) is similar to the output without conditioning and the bound estimates for each subsample are
graphed in Figures 2b, 2c, and 2d. The bounds shift only slightly for each subsample because the true
elasticity is 0.5 for all subsamples and because the number of weighted observations is large.
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Figure 2: Estimating elasticity bounds
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7.3 Semi-parametric point estimates of the elasticity

We estimate the elasticity using a truncated Tobit model that allows for covariates. Truncation and covariates
provide robust estimation that relies on semi-parametric assumptions and does not require the unobserved
heterogeneity PDF to be normality distributed (Bertanha et al. 2021). We demonstrate the robustness of
this method by comparing estimates of the correctly specified model with estimates from a misspecified
model that still recover the true elasticity.

Correctly specified Tobit model

We begin by estimating the correctly specified model using bunchtobit.

. bunchtobit y x1 x2 x3 [fw=w], k(2.0794) tax0(-0.3) tax1(0.1) binwidth(0.084)

Obtaining initial values for ML optimization.
Truncation window number 1 out of 10, 100% of data.
Truncation window number 2 out of 10, 90% of data.
Truncation window number 3 out of 10, 80% of data.
Truncation window number 4 out of 10, 70% of data.
Truncation window number 5 out of 10, 60% of data.
Truncation window number 6 out of 10, 50% of data.
Truncation window number 7 out of 10, 40% of data.
Truncation window number 8 out of 10, 30% of data.
Truncation window number 9 out of 10, 20% of data.
Truncation window number 10 out of 10, 10% of data.

bunchtobit_out[10,5]
data % elasticity std err # coll cov flag

1 100 .50942038 .00218416 0 0
2 90 .50757751 .00224641 0 0
3 80 .50901731 .00227846 0 0
4 70 .5081248 .00229212 0 0
5 60 .5085289 .00231752 0 0
6 50 .50665244 .00236967 0 0
7 40 .50980096 .00251911 0 0
8 30 .50959091 .00273072 0 0
9 20 .50469997 .00317656 0 0

10 10 .48034144 .00585388 0 0

The command estimates the elasticity for ten different subsamples by default. The first uses all the data,
the second uses 90% of the data around the kink, the third uses 80% around the kink, and so on. Estimation
proceeds in 10 percentage point intervals declining down to the last subsample that uses only 10% of the
data. Each subsample is truncated symmetrically, centered around the kink, and includes the observations
at the kink. For the data simulated by equation 3 and using the 90% truncated subsample as an example,
about 42.5% of the data are from below the kink, about 42.5% of the data are from above the kink, and
about 5% of the data are from the kink. The fraction of data at the kink does not change with this type
of truncation. For example, the 10% subsample uses about 2.5% of the data above and below the kink and
about 5% from the kink.

Because the model is correctly specified, the estimates reported in the elasticity column are always
very close to the true value of 0.5 for any truncated subsample. Standard errors in column st err are small
because the simulated data includes one million weighted observations. The standard errors increase as the
percent of data used decreases because we use fewer observations. The table also reports the number of
covariates that were omitted because they were collinear in column # coll cov and when optimizing the
likelihood did not converge to a maximum in column flag.

Along with this numeric output, bunchtobit also produces a best-fit graph for each subsample and a
graph of the elasticity estimate for all subsamples. Figures 3a, 3b, and 3c display these best-fit graphs for
the 100%, 50%, and 20% truncation subsamples, respectively. Each of these panels presents a histogram
of yi (sand colored bars) and the estimate of the correctly specified and truncated Tobit model implied
outcome variable (black line). The model is correctly specified and so it fits the data well for all truncated
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subsamples. Figure 3d plots the estimate (black line) and 95% confidence interval (gray shading) for each
truncated subsample corresponding to the elasticity column.
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Figure 3: Correctly specified truncated Tobit estimates

The elasticity is the main parameter of interest but the covariate coefficients for the last subsample can
be obtained by using the estimates replay command. bunchtobit always uses the full sample and then
the percent of the sample specified in grid(numlist). For example, truncating to 77% of the data for the
correctly specified model and then using estimates replay provides the following output:

. bunchtobit y x1 x2 x3 [fw=w], k(2.0794) tax0(-0.3) tax1(0.1) binwidth(0.084) grid(77)

Obtaining initial values for ML optimization.
Truncation window number 1 out of 2, 100% of data.
Truncation window number 2 out of 2, 77% of data.

bunchtobit_out[2,5]
data % elasticity std err # coll cov flag

1 100 .50942038 .00218416 0 0
2 77 .50853448 .00228193 0 0

. estimates replay

------------------------------------------------------------------------------
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------------------------------------------------------------------------------
active results
------------------------------------------------------------------------------
------------------------------------------------------------------------------

Number of obs = 770,197
Wald chi2(0) = .

Log pseudolikelihood = -.96353314 Prob > chi2 = .

( 1) [eq_l]x1 - [eq_r]x1 = 0
( 2) [eq_l]x2 - [eq_r]x2 = 0
( 3) [eq_l]x3 - [eq_r]x3 = 0

------------------------------------------------------------------------------
| Robust
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
eq_l |

x1 | -.2876602 .0035942 -80.03 0.000 -.2947048 -.2806157
x2 | 3.541997 .0038313 924.49 0.000 3.534488 3.549507
x3 | .5509277 .0036639 150.37 0.000 .5437466 .5581087

_cons | 3.022084 .0033913 891.14 0.000 3.015438 3.028731
-------------+----------------------------------------------------------------
eq_r |

x1 | -.2876602 .0035942 -80.03 0.000 -.2947048 -.2806157
x2 | 3.541997 .0038313 924.49 0.000 3.534488 3.549507
x3 | .5509277 .0036639 150.37 0.000 .5437466 .5581087

_cons | 2.757434 .0035783 770.60 0.000 2.750421 2.764448
-------------+----------------------------------------------------------------
lngamma |

_cons | .3472965 .001056 328.87 0.000 .3452267 .3493662
-------------+----------------------------------------------------------------

sigma | .7065958 .0014945 .7051348 .7080598
cons_l | 2.135392 .0030204 2.129472 2.141312
cons_r | 1.948391 .0033686 1.941789 1.954994

eps | .5085345 .0022819 .504062 .513007
------------------------------------------------------------------------------

The elasticity reported in column elasticity for the 77% subsample is from the estimate eps in the active
results table shown by estimates replay. The first equation, eq l, coefficient estimates on x1, x2, and
x3 are from the left-hand side of the kink and are the same as the estimates from the second equation, eq r,
on the right of the kink. These coefficients are constrained to be the same on the left and right sides of the
kink as reflected by the three constraints ( 1), ( 2), and ( 3), at the top of the table and consistent with
equation 3. Because the model is correctly specified, the covariate coefficient estimates are consistent and
the estimates shown by estimates replay are close to the truth for each coefficient.

Incorrectly specified Tobit model

The correctly specified Tobit model from the previous section satisfies the assumption that νi is normal
and therefore always fits the observed distribution of yi. A misspecified model that does not have normally
distributed residuals will not always fit the distribution of yi well. However, Bertanha et al. (2021) prove that
when the Tobit model best-fit distribution matches the observed distribution of yi, the elasticity estimated
by the Tobit is consistent for the true elasticity, regardless of whether νi is normal. This section demonstrates
this robustness property using a misspecified model that does not have normal residuals. Specifically, we
omit the covariate x2 and estimate the following model.

. bunchtobit y x1 x3 [fw=w], k(2.0794) tax0(-0.3) tax1(0.1) binwidth(0.084)

Obtaining initial values for ML optimization.
Truncation window number 1 out of 10, 100% of data.
Truncation window number 2 out of 10, 90% of data.
Truncation window number 3 out of 10, 80% of data.
Truncation window number 4 out of 10, 70% of data.
Truncation window number 5 out of 10, 60% of data.
Truncation window number 6 out of 10, 50% of data.
Truncation window number 7 out of 10, 40% of data.
Truncation window number 8 out of 10, 30% of data.
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Truncation window number 9 out of 10, 20% of data.
Truncation window number 10 out of 10, 10% of data.

bunchtobit_out[10,5]
data % elasticity std err # coll cov flag

1 100 .64273758 .00284316 0 0
2 90 .76439701 .00347207 0 0
3 80 .74118047 .00338512 0 0
4 70 .68976169 .00316223 0 0
5 60 .61198546 .00282339 0 0
6 50 .52865914 .0024863 0 0
7 40 .5126028 .00253684 0 0
8 30 .5103484 .00273721 0 0
9 20 .50452522 .00317563 0 0

10 10 .48193233 .00616719 0 0
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Figure 4: Incorrectly specified truncated Tobit estimates

The misspecified model returns an elasticity estimate of 0.643 using 100% of the data. This is a substantially
biased estimate of the true elasticity of 0.5 and Figure 4a shows that the misspecified model does not fit
well. Using data local to the kink, however, can overcome the effect of omitting x2. Figure 4b uses 50% of
the data and fits much better than the estimate that uses all of the data. Figure 4c uses 20% of the data
local to the kink and fits even better than the 50% subsample. The smaller the truncation window around
the kink, the easier it is to fit the unconditional distribution of the outcome variable and the stronger is our



M. Bertanha, A. H. McCallum, A. Payne, N. Seegert 15

conviction that the estimate of the elasticity is consistent. Figure 4d shows that for all subsamples that use
50% of the data or less, we recover the true elasticity of 0.5.

7.4 Friction errors

Many datasets have friction errors which are defined as when the bunching mass is dispersed in a small interval
near, instead of exactly at, the kink. Friction errors can be caused by measurement error, optimizing frictions
(Chetty et al. 2011), or other distortions. When friction errors are present, they must first be filtered out
before a bunching estimation method can be applied.

The procedure implemented by bunchfilter is a practical way of filtering out friction errors. It works
by fitting a polynomial to the empirical CDF of the response variable with friction errors, yfrici. It excludes
observations in a specified interval around the kink during estimation and allows the intercepts to differ to the
left and right of that interval. The estimated CDF is then linearly extrapolated into the excluded interval,
which constitutes an estimate of the CDF of the response variable without friction errors, yi. The inverse of
the extrapolated CDF evaluated at each observation produces the filtered variable and the difference between
the intercepts at the kink provides the estimate of the bunching mass.

This filtering method produces consistent estimates of the distribution of the response variable without
frictions under three conditions. First, the friction error, ei, must be iid with known and bounded support.
There is no need for frictions to be mean zero nor for the distribution of the friction error, f (ei), to be
symmetric or parametric. Second, friction errors must only affect bunching individuals. Third, the CDF of
yi without friction error must equal a polynomial in a known neighborhood of the kink that is bigger than
the support of the friction error.

In terms of the simulated data, we generate the outcome variable with friction errors as

yfrici = yi + eiI (yi = ln (8)) , (4)

in which yi is from equation 3, ei are iid truncated normal from
f (ei) = φ (ei) / [Φ (ln (1.1))− Φ (ln (0.9))], φ (·) is the standard normal PDF, and Φ (·) is the standard normal
CDF. The errors have known and bounded support [ln (0.9) , ln (1.1)], which ensures frictions never add to or
subtracts from yi by more than log 10 percent. The three conditions needed for bunchfilter to consistently
estimate yi are satisfied by equation 4.

This example generates the filtered variable, generate(yfiltered) excluding the interval deltam(0.12),
deltap(0.12) around the kink,

. bunchfilter yfric [fw=w], kink(2.0794) generate(yfiltered) deltam(0.12) deltap(0.12)
> perc_obs(30) binwidth(0.084)
[ 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ]

Without the friction errors, 5.16% of the responses bunch at the kink in the simulated data from equation
3. Including friction errors lowers this fraction to zero because no observation are exactly at the kink in
equation 4. After removing the frictions with bunchfilter, the filtered data has 5.15% of the responses at
the kink. The histogram of yfrici is shown in Figure 5a. The unfiltered data (sand colored bars) exhibits
diffuse bunching around the kink point. The histogram for the filtered data, generate(yfiltered), is
depicted in the (black bars) with evident reassignment of original dispersed observations around the kink to
the kink point exactly. This reassignment can also be seen in the contrast between the filtered and unfiltered
CDFs in Figure 5b. Both of these figures are produced by the bunchfilter command.

Automatic filtering, bounds, and semi-parametric estimates

Despite friction errors and model misspecification, bunching provides robust estimates of the true elasticity
by implementing bunchbounds, bunchtobit, and bunchfilter automatically. The user can provide outcome
data with friction errors and a misspecified model and bunching can still recover the true elasticity. For
example, using bunching with the outcome data from equation 4 and omitting the covariate x2 gives the
following output
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Figure 5: Effect of bunchfilter on data with friction errors

. bunching yfric x1 x3 [fw=w], k(2.0794) tax0(-0.3) tax1(0.1) m(2) gen(ybunching)
> deltam(0.12) deltap(0.12) perc_obs(30) binwidth(0.084)

***********************************************
Bunching - Filter
***********************************************
[ 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ]
***********************************************
Bunching - Bounds
***********************************************
Your choice of M:
2.0000

Sample values of slope magnitude M
minimum value M in the data (continuous part of the PDF):
0.0000

maximum value M in the data (continuous part of the PDF):
0.3879

maximum choice of M for finite upper bound:
1.5574

minimum choice of M for existence of bounds:
0.0840

Elasticity Estimates
Point id., trapezoidal approx.:
0.4944

Partial id., M = 2.0000 :
[0.3939 , +Inf]

Partial id., M = 1.56 :
[0.4099 , 0.9542]

***********************************************
Bunching - Tobit
***********************************************
Obtaining initial values for ML optimization.
Truncation window number 1 out of 10, 100% of data.
Truncation window number 2 out of 10, 90% of data.
Truncation window number 3 out of 10, 80% of data.
Truncation window number 4 out of 10, 70% of data.
Truncation window number 5 out of 10, 60% of data.
Truncation window number 6 out of 10, 50% of data.
Truncation window number 7 out of 10, 40% of data.
Truncation window number 8 out of 10, 30% of data.
Truncation window number 9 out of 10, 20% of data.
Truncation window number 10 out of 10, 10% of data.
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bunchtobit_out[10,5]
data % elasticity std err # coll cov flag

1 100 .64061846 .00283852 0 0
2 90 .76174075 .00346511 0 0
3 80 .73858248 .0033782 0 0
4 70 .68731806 .00315564 0 0
5 60 .60975678 .00281718 0 0
6 50 .52658294 .00248003 0 0
7 40 .51043494 .00252942 0 0
8 30 .50822486 .00272937 0 0
9 20 .50383069 .00317681 0 0

10 10 .50830561 .01367125 0 0

bunching first filters the data using bunchfilter. It then implements bunchbounds on the filtered outcome
using the full sample and maximum slope magnitude as specified. Finally, it uses bunchtobit on the filtered
outcome with the covariates specified, x1 and x3, for each of the 10 default truncated subsamples. Along
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Figure 6: Elasticity estimates with friction errors and model misspecification

with numeric output, bunching produces the graphs produced by each of bunchfilter, bunchbounds, and
bunchtobit commands. Selections from these graphs are shown in Figure 6.

The output from bunching shows that after we filter the data, the bounds contain the true value of
0.5 (Figure 6a). Likewise, estimates from the Tobit model in the numeric output shows that using a 50%
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subsample or less of the recovers the true elasticity of 0.5 despite friction errors and model misspecification.
Truncating to 50% of the data provides a good fit as shown in Figure 6b and Figure 6c shows that truncating
to 20% provides an even better fit. Figure 6d shows that for subsamples with 50% of the data and less provides
an estimate that is very close to the truth of 0.5.

8 Concluding remarks

Our new bunching package provides a suite of estimation techniques that allow researchers to tailor their
estimation of the bunching elasticity to different assumptions. These estimation methods include non-
parametric bounds and semi-parametric censored models with covariates. The non-parametric bounds are
the least restrictive method and also nest estimators from the previous literature. These techniques have
wide applicability, because piecewise-linear budget constraints are common across fields, from public finance
and labor economics, to industrial organization and accounting.
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