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1 Introduction

Policymakers face two fundamental questions when designing a carbon tax. First, at what

level should the tax be set? Second, what should be done with the new stream of government

revenue? While numerous studies shed light on the optimal level and trajectory for a carbon

tax (e.g., Acemoglu et al. (2012), Golosov et al. (2014), Barrage (2019), Lemoine and Rudik

(2017)), economists have yet to identify the welfare-maximizing way to return carbon-tax

revenue to the public.

In this paper, we draw on an approach from the macro public finance literature (e.g.,

Conesa et al. (2009), Heathcote et al. (2017)) and solve for the welfare-maximizing way

to recycle carbon-tax revenue in a general equilibrium model calibrated to reflect the het-

erogeneity in the U.S. economy. Following recent studies examining the welfare impacts

of carbon taxes (Chiroleu-Assouline and Fodha (2014), Williams et al. (2015), Fried et al.

(2018)) we model the agent’s entire lifecycle to generate heterogeneity over age. In addition,

we include idiosyncratic shocks to labor income to generate heterogeneity within each age

group and we use Stone-Geary preferences to capture the fact that low-income agents use

a higher fraction of their expenditures for energy (Metcalf (1999), Grainger and Kolstad

(2010)).1 Measuring social welfare behind the veil of ignorance, we solve for the revenue

recycling approach that maximizes the expected lifetime welfare of an agent born into the

future steady-state.2

We find that the revenue-neutral carbon-tax policy that maximizes the expected steady-

state welfare recycles carbon tax revenue using two mechanisms. Approximately two thirds

of the carbon-tax revenue is used to reduce the existing distortionary tax on capital income

while the remaining one third is used to increase the progressivity of the existing labor-

income tax. This optimal recycling approach does not meaningfully vary across different

carbon tax levels or across different specifications for the utility function. While we find that

the carbon tax itself is regressive, the optimal recycling approach more than unwinds this

regressivity, resulting in a progressive overall change to the tax system.

The optimal recycling approach we identify differs from the method originally prescribed

1Recent work by Aubert and Chiroleu-Assouline (2019) and Jacobs and van der Ploeg (2019) also examine
the welfare consequences of a carbon tax in models with income heterogeneity and homothetic preferences.

2Following much of the literature studying revenue-recycling options, we do not model the environmental
benefits from carbon tax policies. Rather, we focus on the non-environmental welfare consequences. In
addition, we focus exclusively on modeling income heterogeneity, abstracting from heterogeneity across
other dimensions (e.g., spatial heterogeneity). Recent work by Cronin et al. (2019) explores the potential
redistributional impacts of a carbon tax policy within income groups.
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in the economics literature. Environmental and public economists have traditionally called

for carbon-tax revenue to be returned exclusively through reductions in preexisting, dis-

tortionary taxes – the approach that maximizes economic surplus (Parry (1995), Goulder

(1995), de Mooij and Bovenberg (1998), Bovenberg (1999)). However, this early literature

largely abstracts from heterogeneity and the welfare consequences arising from the distri-

butional impacts of carbon-tax policies. Accounting for heterogeneity, we find it is welfare

maximizing to instead use a substantial portion of the revenue to increase equality.3

The optimal recycling method also generates higher welfare and more equality than

the approach advocated for by many involved in the policy-making process. Motivated

by distributional concerns, the carbon-tax policy proposals garnering some of the greatest

support call for carbon-tax revenue to be returned to individuals through equal, lump-sum

rebates.4 However, our results demonstrate that an even more progressive outcome can be

achieved with far higher welfare by instead increasing the progressivity of the labor tax.

To explore whether our optimal rebate is unique to a carbon tax, we conduct a second

experiment in which we search for the optimal recycling approach assuming that the new

stream of revenue is provided exogenously instead of coming from a carbon tax. Like in the

carbon tax experiment, we find that it is optimal to use one portion of the revenue to reduce

the capital tax and the other portion to increase the progressivity of the labor tax. However,

the fraction of revenue used to reduce the capital tax is smaller when the stream of revenue

is exogenous instead of from a carbon tax. This is because the carbon tax itself depresses

capital. Hence, when the revenue comes from a carbon tax, it is optimal to mitigate the

resulting decrease in capital by using relatively more of the revenue to reduce the capital

tax.

The novel insights provided by our analysis stem from the set of revenue recycling op-

tions we consider within our model. The existing literature studying revenue-neutral carbon

taxes has primarily focused on a small set of blunt approaches for recycling carbon-tax

revenues – i.e. returning revenue exclusively through lump-sum rebates, a reduction in the

capital-income tax rate, or a reduction in the labor-income tax rate.5 In practice, however,

3We focus exclusively on revenue-neutral carbon tax policies. Related research considers non-revenue-
neutral approaches (Carbone et al. (2013)).

4For example, the Carbon Dividend proposal, put forward by the Climate Leadership Council (CLC),
calls for the U.S. federal government to institute a carbon tax and return the revenue “directly to U.S.
citizens through equal lump-sum rebates.” See “Economists’ Statement on Carbon Dividends,” January
16th, 2019 Wall Street Journal. Similarly, Canada’s recently adopted climate policy returns revenues to
households through lump-sum payments, which The Citizens’ Climate Lobby Canada (CCL) states will
“equitably recycle the revenue obtained from carbon fees” (CCL (2018)).

5In one notable exception, Goulder et al. (2019) consider combinations of lump-sum rebates and reductions
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policymakers have a much broader set of options at their disposal. To capture this fact,

we model an entire continuum of potential rebate approaches. In particular, we consider

convex combinations of the following four rebate options for the carbon-tax revenue: (i)

reduce the capital-income tax, (ii) reduce the level of the labor-income tax, (iii) increase the

progressivity of the labor-income tax, and (iv) provide direct rebate payments that may or

may not vary with an agent’s income. Intuitively, the first two rebate mechanisms allow

policymakers to unwind the distortions caused by the preexisting labor or capital-income

taxes while the second two rebate mechanisms provide options for policymakers to achieve

a more progressive outcome.

The rich set of rebate options we consider are crucial for uncovering the result that the

welfare-maximizing policy results in a progressive change to the current tax system. If, as

in much of the previous literature, policymakers can only use lump-sum rebates to achieve a

progressive outcome, we find that it is welfare maximizing to return all of the revenue through

a reduction in the capital tax, using none to increase equality. A key reason why our optimal

policy differs from this standard result is that the lump-sum rebate is an ineffective way

to increase equality. By providing uniform payments to all agents, lump-sum rebates do

a poor job of targeting revenue back towards low-income agents. Moreover, by providing

payments to agents of all ages, including retirees, lump-sum rebates reduce the need to save

for retirement, crowding out capital. In contrast, by increasing the progressivity of the labor

tax, policymakers are able to target carbon-tax revenues towards low-income, working-age

individuals, making it a far more effective mechanism for increasing equality.

Stepping back, the analysis presented in this paper highlights the value of bringing the

modeling tools from the macroeconomic literature to bear on a question traditionally studied

by environmental and public economists. The macro public finance literature has long used

general equilibrium, lifecycle models with rich within-cohort heterogeneity to quantify the

welfare and distributional effects of alternative tax policies. This literature has primarily

focused on which taxes to use to achieve a given revenue target. Instead, we focus on

which taxes to decrease, given a new stream of revenue from a carbon tax, to satisfy the

same revenue target. By using the macro modeling tools to incorporate heterogeneity, we

are able to provide a much more thorough understanding of the welfare and distributional

consequences of potential carbon tax policies.

in federal taxes in an infinitely-lived agent model.
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2 Model

2.1 Demographics

Our model incorporates overlapping generations of agents. Agents enter the model when they

start working, which we approximate with a real-world age of 20. Each period, agents age one

year and a continuum of new 20-year-olds enters the model. The size of the new-born cohort

grows exogenously at rate n. Agents make labor-supply and savings decisions each period

until they are forced to retire at a real-world age of 65. Retired agents finance consumption

from Social Security payments and accumulated assets. Lifetime length is uncertain and

mortality risk varies over the lifetime.6 Since individuals are uncertain how long they will

live, they may die with positive asset holdings. We treat these assets as accidental bequests

and redistribute them as lump-sum transfers T at across individuals during period t.

2.2 Agents

Agents maximize the expected sum of discounted utility. We model agents as having time-

separable preferences specified by:

U(c̃i,j,t, hi,j,t) =
c̃1−θ1i,j,t

1− θ1
− χ

h
1+ 1

θ2
i,j,t

1 + 1
θ2

, (1)

where c̃i,j,t represents the level of a composite good consumed by agent i, at age j, during

period t and hi,j,t represents the hours worked. θ1 is the coefficient of relative risk aversion

and θ2 is the Frisch elasticity of labor supply. χ determines the dis-utility of hours.

The composite good is comprised of a generic consumption good and carbon-emitting

energy, capturing the fact that energy is not only used in production, but also directly by

agents (e.g., gasoline). Importantly, previous work highlights that the share of expenditures

that goes towards energy differs systematically across agents – with lower-income groups

devoting a larger share of their budgets to energy (Metcalf (2007), Hassett et al. (2009)).

Following Fried et al. (2018), we capture this negative relationship between income and

energy budget shares by assuming that agents must consume a minimum amount of energy,

ē, and that agents derive no utility from energy consumed up to this subsistence level. In

particular, composite consumption is given by c̃i,j,t = cγi,j,t(e
c
i,j,t − ē)1−γ, where ci,j,t and eci,j,t

6We impose a maximum age of 100.
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denote the levels of the generic good and energy consumed, respectively.7

Agents are endowed with one unit of time each period which they divide between labor

and leisure. To generate a realistic distribution of income, we allow labor productivity

to vary across agents and over time. In period t, at age j, agent i earns labor income

yhi,j,t ≡ wt · µi,j,t · hi,j,t, where wt is the wage-rate, hi,j,t denotes hours worked, and µi,j,t

is the agent’s idiosyncratic productivity. Following Kaplan (2012), the log of an agent’s

idiosyncratic productivity consists of four additively separable components:

log µi,j,t = εj + ξi + νi,j,t + πi,j,t. (2)

εj governs age-specific human capital and evolves over the lifecycle in a predetermined man-

ner. ξi ∼ NID(0, σ2
ξ ) is an agent-specific fixed effect observed when an agent enters the

model. πi,j,t ∼ NID(0, σ2
π) is an idiosyncratic transitory productivity shock, and νi,j,t is an

idiosyncratic persistent productivity shock which follows a first-order autoregressive process:

νi,j,t = ρνi,j−1,t−1 + κi,j,t with κi,j,t ∼ NID(0, σ2
κ) and νi,20,t = 0. (3)

To partially self-insure against productivity shocks and to finance consumption during

retirement, agents can save by accumulating shares of physical capital, ai,j,t+1, which they

rent to firms at rate Rt. Capital accumulates according to the law of motion:

kt+1 = (1− δ)kt + it,

where δ denotes the depreciation rate and variable i denotes new investment. We define

rt ≡ Rt − δ to be the agent’s net rate of return. Working-age agents can borrow up to an

exogenously-determined debt limit: ai,j,t ≥ a.8

2.3 Firms

The final good, Y , is produced competitively from capital, Ky, efficiency labor, Ny, and

carbon-emitting energy, Ey. The production technology is Cobb-Douglas between the three

7As an alternative to the Stone-Geary specification, one could assume that agents have heterogeneous
preferences over energy consumption and this heterogeneity is correlated with the agent-specific fixed effect
in the labor-productivity process in such a way as to generate declining energy budget shares with income.

8Agents borrow at the rate of rt divided by their probability of surviving period t.
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inputs:

Yt = Ayt (K
y
t )αy(Ny

t )1−αy−ζ(Ey
t )ζ . (4)

Ay denotes total factor productivity. αy and ζ denote capital share and energy share, respec-

tively. The final good is the numeraire and can be used for consumption and investment. The

specification in equation (4) implies that the economy can reduce fossil energy consumption

by either reducing total production, or by substituting capital and labor for fossil-energy.

Implicitly, this substituted capital and labor corresponds to non-carbon emitting energy or

improvements in energy efficiency.

Carbon-emitting energy is produced competitively from capital, Ke, and efficiency labor,

N e, according to the production technology:

Et = Aet (K
e
t )
αe(N e

t )1−αe . (5)

Parameter αe denotes capital’s share in the production of energy.

2.4 Government

The government runs a balanced-budget, pay-as-you-go Social Security system and raises

revenue to finance an exogenous level of unproductive spending, G. The Social Security

system is financed with a flat tax, τ s, on labor income, up to a taxable maximum, yh,max.

In practice, the Social Security benefits provided to retired agents are a concave, piecewise

linear function of each agents’ average labor earnings over their highest 35 years of earnings.

Instead of including an agent’s whole history of labor earnings as an additional state variable,

we follow Kindermann and Krueger (2018) and approximate lifetime labor earnings using

agents’ ability, ξ, and the value of the last realization of their persistent wage shocks, ν65.

Specifically, we compute x(ξ, ν65), the average lifetime labor earnings over the population,

conditional on the ability and final persistent shock values. The social security benefit

an agent of type (ξ, ν65) receives during each period of retirement is determined using a

piecewise-linear function of x(ξ, ν65) with marginal benefit rates, φi, i ∈ {1, 2, 3}, given by:

φ1 for 0 ≤ x < b1

φ2 for b1 ≤ x < b2

φ3 for b2 ≤ x < b3.

(6)
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To finance spending G, the government can tax capital income, labor income, and, once a

climate policy is adopted, carbon emissions. The government taxes an agent’s capital income,

yki,j,t, according to a constant marginal tax rate τ k. An agent’s capital income is the return on

her assets plus the return on assets she receives as accidental bequests, yki,j,t ≡ rt(ai,j,t +T at ).

Labor income is taxed according to a progressive tax schedule. An agent’s taxable la-

bor income is her labor income, yhi,j,t, net of her employer’s contribution to Social Security

which is not taxable. Thus, ỹhi,j,t ≡ yhi,j,t − τ s min(yhi,j,t, y
h,max)/2 is the agent’s taxable labor

income, where min(yhi,j,t, y
h,max)/2 is the employer’s Social Security contribution. Following

the quantitative public finance literature (Benabou (2002), Guner et al. (2014), Heathcote et

al. (2017)), we use the following two-parameter function to model total labor income taxes

for an agent with labor income ỹhi,j,t:

T h(ỹhi,j,t) = max

1− λ1

(
ỹhi,j,t
¯̃yht

)−λ2
, 0

 ỹhi,j,t, (7)

where ¯̃yht is the mean value of taxable labor income in the economy. We bound the labor-tax

function below at zero since we do not observe negative labor-income taxes in the U.S.

The function specified by equation (7) allows us to flexibly alter the labor tax following

the introduction of a carbon tax. As long as the zero lower-bound does not bind, decreasing

λ1 decreases the after-tax labor-income of all individuals by the same percentage – leaving

the distribution of after-tax income across agents unchanged. In contrast, changing λ2 alters

the distribution of after-tax labor income. Increasing λ2 reduces the average tax rate for low-

income households and increases the average tax rate for high-income households, reducing

the inequality in the distribution of after-tax labor income.

With the introduction of a climate policy, the government can finance a portion of spend-

ing with a carbon tax, τ c, levied on each unit of carbon-emitting energy consumed.9 Using

our model, we compare steady-state outcomes across a range of revenue-neutral carbon

tax policies. The stationary competitive equilibrium, in which factor prices and aggregate

macroeconomic variables are constant, is defined in Appendix A.

9Given that fossil fuel combustion accounts for over 80 percent of GHG emissions, a carbon tax behaves
much like a tax on energy. This abstracts from substitution between fossil fuel energy sources with varying
carbon intensities that could occur with a carbon tax.
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3 Calibration

We calibrate the model to match key features of the U.S. economy. We choose one set of

parameters from the data and literature. The remaining parameters are set to ensure mo-

ments in the model match their values in the data. Table 1 reports the calibrated parameter

values. We relegate the discussion of the data sources to Appendix B.

Table 1: Parameter Values
Parameter Value
Persistence: ρ 0.958
Persistent shock variance: σ2

κ 0.017
i.i.d shock variance: σ2

π 0.081
Fixed effect variance: σ2

ξ 0.065
Final Good Capital Share: αy 0.3
Energy Share: ζ 0.03
Energy Capital Share: αe 0.597
Depreciation: δ 0.079
Risk Aversion: θ1 2
Frisch Elasticity: θ2 0.5
Conditional Discount: β 0.995
Disutility of Labor: χ 73.3
Subsistence Energy: ē 0.0013
Consumption Energy Share: 1− γ 0.0093
Debt Limit: a -0.156
Labor Tax Function: λ1 0.827
Labor Tax Function: λ2 0.031
Capital Tax Rate: τ k 0.36
SS Payroll Tax: τ s 0.096
Government Spending: G 0.106
SS max income: yh,max 1.358
SS function bend point: b1 0.118
SS function bend point: b2 0.724
SS function bend point: b3 1.358
SS function marginal benefit: φ1 0.9
SS function marginal benefit: φ2 0.32
SS function marginal benefit: φ3 0.15

Note: This table reports the calibrated parameter values.
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3.1 Production

We normalize the total factor productivity in energy and final-good production to unity,

Ae = Ay = 1. Following Barrage (2019), we set capital’s share in energy production equal

to 0.597. Following Golosov et al. (2014), we set capital’s share in the production of output

equal to 0.3 and energy’s share in the production output equal to 0.03. We choose the

depreciation rate on capital equal to 0.079 to match the investment to output ratio of 23.3

percent.

3.2 Preferences

The discount rate β = 0.995 is chosen to match the U.S. capital-output ratio of 2.586.

Disutility of labor χ = 73.3 is chosen to ensure agents spend an average of one third of their

time endowment working. Following Conesa et al. (2009), the coefficient of relative risk

aversion, θ1, equals two and following Kaplan (2012), the Frisch elasticity of labor supply,

θ2, equals 0.5. We choose the debt limit, a = −0.156 to match the ratio of total debt

(among individuals with debt) to total savings in the U.S. of 0.05. The conditional survival

probabilities are based on estimates in Bell and Miller (2002).

Subsistence energy, ē, governs how an agent’s energy budget share changes with income.

Following Fried et al. (2018), we choose ē = 0.0013 to target the energy-share difference

between the top and bottom halves of the expenditure distribution based on data from the

CEX (see Appendix B). We also explore the sensitivity of the results across higher and lower

values for ē. The expression 1−γ represents fossil energy’s share in the consumption-energy

composite, c̃. All else constant, an increase in γ reduces energy’s share in the consumption-

energy composite and thus decreases the agent’s demand for energy. We choose γ = 0.9907

to match the empirical ratio of energy consumed directly by households to total energy

consumption, 0.183.

3.3 Idiosyncratic Labor Productivity

We take the parameters of the idiosyncratic labor productivity processes from Kaplan (2012):

σ2
ξ = 0.065, σ2

κ = 0.017, σ2
π = 0.081 and ρ = 0958.10 Importantly, the annual variation in

labor income that Kaplan (2012) uses to estimate the shock processes includes heads of

10We discretize the shocks using two states to represent the transitory and permanent shocks and five
states for the persistent shock. To discretize the persistent shock, we use the Rouwenhorst method which is
well-suited for discretizing highly persistent shocks with a small number of states (Kopecky and Suen 2010).
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households who have worked as little as one-quarter of a full-time work-year. Thus, the

estimated labor-income process includes variation in annual labor income from any unem-

ployment spells that last less than 39 weeks for a full-time worker. This incorporates the

vast majority of unemployed workers.11 The age-specific human capital parameters, {εj}100j=20

are from Huggett and Parra (2010).12

3.4 Government Policy

Government expenditure, G = 0.106, is set to ensure it equals 15.7 percent of output.

Following Kaplan (2012), the tax rate on capital income, τ k, is set to 36 percent. We set

the Social Security marginal benefit rates, φ1 = 0.9, φ2 = 0.32 and φ3 = 0.15, to match the

piecewise-linear benefit function used in the U.S. Social Security system. To determine the

benefit function’s knot points, b1 = 0.12, b2 = 0.72 and b3 = 1.36, we set the ratio of the

knot point to average labor earnings in the model equal to the corresponding ratio of the

actual knot point and the average labor earnings in the data.13 We choose the social security

tax, τ s = 0.096, so that the social security budget balances each period. With each carbon

tax policy we simulate, we adjust the Social Security benefits so that the purchasing power

is unchanged from the pre-carbon-tax baseline steady state (Goulder et al. 2019). Following

Guner et al. (2014), we set the curvature parameter of the labor-tax function, λ2, equal to

0.031. The parameter determining the level of the labor tax, λ1, is set equal to 0.827 to clear

the government budget constraint. These parameters imply that an agent with the mean

labor income faces an average labor-tax rate of 17.4 percent and a marginal labor-tax rate

of 20.0 percent.

To focus exclusively on the welfare consequences of alternative approaches for rebating

the resulting carbon-tax revenue, we set the tax on carbon emissions at a fixed level of $40

dollars per ton of CO2 – the initial value proposed by the Climate Leadership Council (CLC,

2019). We also explore the sensitivity of the results across different carbon tax levels. To

calibrate the size of the tax in the model, we calculate the empirical value of the tax as a

fraction of the price of a fossil energy composite of coal, oil, and natural gas. We calculate

the price of this energy composite averaging over the price of each type of energy in each

11The average U.S. long-term unemployment rate (duration greater than 27 weeks) equals 1 percent, and
accounts for less that one quarter of total unemployment. Data are from the BLS, we take the average over
the five most recent years, July 2014-July 2019.

12The values are displayed in Table 3 of Huggett and Parra (2010). Following Peterman and Sommer
(Forthcoming), we extend and smooth the age-specific human capital values to 65 years using a quadratic
polynomial.

13The maximum taxable labor income for Social Security corresponds to the top bend point: yh,max = 1.36.
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year, and weighting by the relative consumption in each year. Similarly, we calculate the

carbon emitted from the energy composite by averaging over the carbon intensity of each

type of energy in each year, and weighting by the relative consumption in each year. This

process implies that a $40 per ton carbon tax equals 49 percent of our composite fossil energy

price in the baseline steady state, yielding τ c = 0.26.

4 Computational Experiments

We use the model to study the long-run welfare effects of policies that combine the carbon

tax with one or more rebate instruments to return the revenue back to agents.

4.1 Rebate Policies

We allow the policymaker to return the carbon-tax revenue through direct rebate payments

and by decreasing existing federal labor and capital tax rates. Since we are focused on ways to

return the carbon-tax revenue, not raise additional revenue, we do not allow the policymaker

to increase income taxes for any individual agent. Therefore, the optimal recycling approach

we identify should be viewed as a constrained optimal policy. Additionally, following the

macro-public finance literature, we do not permit age-dependent taxes and transfers. Based

on these criteria, we analyze combinations of the following four rebate instruments: (i) a

reduction in the capital tax, (ii) a reduction in the level of the labor tax, (iii) an increase in

the progressivity of the labor tax, and (iv) a direct rebate payment that is either uniform

across all agents (i.e. a lump-sum rebate) or varies with the agent’s income.

The increase in the progressivity of the labor tax is designed to mimic a change in the

tax code in which the government reduces the average labor-income tax rate for the lower-

income agents but does not change the average labor-income tax rate for higher-income

agents. While increasing the curvature parameter, λ2, in the labor-tax function (equation

(7)) lowers the average labor tax rate for low-income agents, it increases the average labor

tax-rate for high-income agents. This change would not constitute a pure rebate because

the tax rate increases for a fraction of the population. Therefore, we augment equation (7)

to ensure the average tax rate does not increase for any level of labor income. Specifically,

11



the labor tax rate for an individual with taxable labor income, ỹhi,j,t, is:

max

min

[
1− λ1

(
ỹhi,j,t
¯̃yht

)−λ′2
, 1− λ′1

(
ỹhi,j,t
¯̃yht

)−λ2 ]
, 0

 ,
where parameters λ1 and λ2 are the baseline values of the level and curvature parameters

and λ′1 and λ′2 are the corresponding values in the counterfactual simulation.14

We also allow the government to recycle carbon-tax revenue through direct rebate pay-

ments that can vary linearly with an agent’s total income, yij, according to the equation:

T cij = max [Υ1 + Υ2yij, 0] . (8)

Again, we bound the rebate function below by zero to avoid raising taxes on any agent.

4.2 Welfare and Distributional Metrics

To compare social welfare under alternative policies, we must impose a social welfare func-

tion. Following the standard of the macro literature, we measure welfare behind the veil of

ignorance. That is, we identify the carbon tax policy that maximizes the expected welfare

of a newborn in the future steady state prior to the realization of any idiosyncratic shocks.

We quantify the change in social welfare caused by a carbon tax policy using the con-

sumption equivalent variation (CEV). Again, this welfare measure is ex-ante in that it de-

pends on the agent’s expected lifetime consumption before information about the agent is

revealed. Specifically, the CEV measures the uniform percentage change in an agent’s ex-

pected non-energy consumption that is required to make her indifferent – prior to observing

her idiosyncratic ability, productivity, and mortality shocks – between the baseline steady

state and the steady state under the carbon tax. Formally, we define the CEV as the value

14To calculate labor taxes in each counterfactual simulation, we keep the value of average taxable labor
income, ¯̃yh fixed at its value in the baseline.
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of Ω that solves the equality below:

E


J∑
k=1

βk−j
k−1∏
q=j

ψq

 [((1 + Ω)ċi,j,t)
γ(ėci,j,t − ē)1−γ]1−θ1

1− θ1
− χ

ḣ
1+ 1

θ2
i,j,t

1 + 1
θ2

 (9)

= E


J∑
k=1

βk−j
k−1∏
q=j

ψq

 [ĉγi,j,t(ê
c
i,j,t − ē)1−γ]1−θ1

1− θ1
− χ

ĥ
1+ 1

θ2
i,j,t

1 + 1
θ2

 ,

where the ‘dots’ denote values in the baseline economy without a carbon tax and ‘hats’

denote values in the counterfactual economy with the carbon tax in place. The expectation

is taken over the lifetime draws of the labor-productivity shock. Note, when Ω = 0, the

left-hand-side of equation (9) equals the ex-ante expected lifetime welfare for an agent born

into the baseline steady state and the right-hand-side of equation (9) equals the ex-ante

expected lifetime welfare for an agent born into the counterfactual economy with the carbon

tax.

Since our welfare measure is the CEV between two steady states, it captures the long-

run welfare consequences of the carbon tax policy. It does not capture the near-term welfare

effects of the carbon tax as the economy transitions to the new steady state with the carbon

tax in place.15 Therefore, while our results provide insights surrounding what a revenue-

neutral carbon tax should look like in the long-run to maximize welfare, they do not illustrate

how to transition to the optimal long-run policy.

To quantify the distributional impacts of alternative policies, we follow Fried et al. (2018)

and compute the Gini coefficient for lifetime welfare under each policy. We define the Gini

coefficient, G, as:

G =

∑N
i=1

∑N
j=1 |xi − xj|

2N2x̄
, (10)

where xi represents lifetime welfare of agent i, x̄ is the mean of lifetime welfare, and N is the

total number of agents in the economy. The Gini coefficient ranges between zero (perfect

equality) and one (perfect inequality). It is of course important to again stress that the

cross-sectional heterogeneity in our model arises from differences in agents’ productivity and

15Fried et al. (2018) highlight that the non-environmental welfare impacts of revenue-neutral carbon tax
policies can differ meaningfully in the short vs. long run. In particular, agents nearing or post retirement at
the time the carbon tax is adopted can be affected very differently than agents born in the future, long-run
steady state. However, the welfare changes experienced by agents who are relatively young when the policy
is adopted are similar to the welfare effects for agents born into the future steady state.
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lifetime earnings. Therefore, while the Gini coefficient effectively captures the distribution of

the resulting welfare effects across different income groups, it abstracts from the horizontal

distributional effects within income groups that would arise due to other dimensions of

heterogeneity, such as geography or occupation, that are not included in our analysis.

5 Quantitative Results

To find the welfare-maximizing rebate, we calculate the steady state with a carbon tax over

a grid of different rebate policies. The policies include all combinations of the capital tax, τ k,

the level and progressivity of the labor tax, determined by λ1 and λ2, and the slope, Υ2, and

intercept, Υ1, of the rebate-payment function that clear the government budget constraint

and do not increase the capital or labor tax above the baseline levels. Following the insights

from (Goulder et al. 2019), in each counterfactual simulation we adjust the Social Security

benefits so that the purchasing power is unchanged from the baseline.

5.1 Optimal Policy

The welfare-maximizing policy uses 63 percent of the revenue to reduce the capital tax by

5 percentage points to 31 percent. The remaining 37 percent of the revenue is used to

increase equality, specifically by lowering the labor tax for agents earning low labor income.

In particular, Figure 1 highlights that, under the optimal policy, agents with labor-income

earnings below 48 percent of the mean see their average labor tax rates fall, with agents

earning below 24 percent of the mean paying zero labor taxes.

Ultimately, we find that the optimal approach for rebating the revenue eliminates almost

all of the ex-ante non-environmental welfare loss from the carbon tax, with the CEV falling

by only 0.11 percentage points (Table 2). For comparison, Table 2 also reports the CEV

under the rebate approaches typically considered in the literature: exclusively providing

uniform lump-sum rebates, reducing the capital tax, or reducing the level of the labor tax

(for all agents). Recall, these welfare changes do not incorporate benefits stemming from

improved environmental quality. However, Table 2 highlights that the change in energy use,

and thus the environmental benefits, are stable across the policies. Therefore, abstracting

from the environmental benefits will not impact the relative ranking of the policy options.

To understand how the optimal policy achieves the highest expected welfare, it is im-

portant to note that a recycling approach can boost expected welfare not only by reducing

distortionary taxes and increasing economic surplus, but also by redistributing resources
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Figure 1: Rebate From the Increase in Labor Tax Progressivity Under the Optimal Policy
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Note: The figure displays the average labor income tax rate paid by an agent under the optimal policy and in

the baseline steady state. The average tax rate is displayed as a function of an agent’s labor income relative

to the mean level of labor income.

away from agents with high levels of lifetime welfare and low marginal utilities of consump-

tion. The optimal policy does both. First, the optimal policy achieves a substantial amount

of redistribution. Referring to the second row of Table 2, the Gini coefficient of lifetime

welfare falls by 2.35 percent under the optimal rebate, more than double the decrease under

the lump-sum rebate, the most progressive of the three standard instruments. Second, the

optimal policy uses a portion of the revenue to reduce the capital tax rate. As a result, the

decrease in capital under the optimal rebate is less than the corresponding decreases under

the lump-sum and labor-tax rebates (third row of Table 2).

To further highlight how the distributional and the expected welfare impacts differ across

policies, we examine how each policy affects agents across the entire distribution of lifetime

welfare. To do so, we calculate the percentage change in each agent’s baseline consumption

that would be required to make her indifferent – after observing her idiosyncratic ability,

productivity, and mortality shocks – between the baseline steady state and the steady state

under each carbon-tax policy. In contrast to the CEV, which measures the expected ex-
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Table 2: Welfare and Distribution Effects

Lump sum Capital tax Labor tax Optimal
rebate rebate rebate rebate

CEV -0.64 -0.27 -0.54 -0.11
Percent change in the welfare Gini -1.09 -0.00 0.15 -2.35
Percent change in capital -3.37 1.78 -1.83 -0.55
Percent change in the production energy -33.02 -31.18 -32.38 -32.13
Percent change in the consumption energy -27.55 -26.47 -27.10 -27.14

Note: The table displays the CEV and the percentage change the aggregate variables and the Gini
coefficient for lifetime welfare relative to their values in the baseline.

ante change in lifetime welfare, this exercise measures the realized ex-post change in lifetime

welfare for each agent.

Figure 2 displays how the ex-post welfare impacts vary across agents based on their

realized lifetime welfare in the baseline steady state, with the 1st percentile representing

agents with the lowest lifetime welfare. The optimal policy and the lump-sum rebates result

in progressive changes to the tax system; the solid blue and dashed purple lines are downward

sloping, implying that agents with the highest lifetime welfare in the baseline experience the

largest percentage declines is ex-post welfare under both policies. In contrast, the capital

and labor tax rebate policies have relatively neutral distributional impacts; the orange and

purple lines are approximately flat, implying that all agents experience roughly the same

percentage decrease in ex-post welfare.

While the slope of the line reveals the degree of progressivity or regressivity of the policy,

the height of the line reflects how the policy impacts an agent’s welfare, given the value of

lifetime welfare in the baseline on the horizontal axis. The blue line in Figure 2 is always

above the purple line, implying the optimal policy achieves higher ex-post welfare, regardless

of an agent’s realization of lifetime welfare in the baseline. The results are mixed, however,

comparing the optimal policy to the capital and labor tax rebates. Agents with baseline

welfare above the median experience larger welfare losses under the optimal policy compared

to the capital or labor tax rebates (the right half of the blue line is below the orange and

yellow lines). In contrast, agents with lower levels of lifetime welfare fare far better under the

optimal policy (the left half of the blue line is above the orange and yellow lines). Notably,

agents below the 25th percentile of lifetime welfare experience welfare gains under the optimal

policy.

The overall average height of the line reflects how the policy impacts an agent’s expected
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Figure 2: Heterogeneity in Ex-Post Welfare Changes
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Note: The vertical axis represents the percentage change in baseline lifetime consumption required to make

an agent indifferent between living in the baseline steady state and the steady state under a given climate

policy. Agents are separated by their lifetime welfare in the baseline steady state, with the 1st percentile

representing the agent with the lowest lifetime welfare.

lifetime welfare prior to being born. Under the optimal rebate, the sizable ex-post welfare

gains experienced by agents with the lowest lifetime welfare pull the average height of the

blue line up, highlighting the importance of redistribution in reaching the expected welfare

achieved by the optimal policy. These patterns also demonstrate that choice of the social

welfare function does not affect the relative welfare ranking of the lump-sum and optimal

rebates. Since the blue line is always above the purple line, the optimal rebate dominates

the lump-sum rebate regardless of the weights a welfare function would place on different

segments of the lifetime welfare distribution.

In general, our results demonstrate that the optimal rebate uses one portion of the

revenue to reduce the distortionary tax on capital and the other portion to increase equality

by raising the progressivity of the labor tax rate. Importantly, this finding continues to hold

under different carbon taxes and different assumptions on the regressivity of the carbon tax.

The first column of Table 3 reports the fraction of the carbon tax revenue used to reduce
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Table 3: Sensitivity

Fraction of revenue used Percent change in
to reduce the capital tax the welfare Gini

Subsistence energy: ē
ē = 0 0.64 -2.36
ē = 0.0013 0.63 -2.35
ē = 0.0026 0.61 -2.33
Carbon tax: τ c

$30/ton CO2 0.60 -2.21
$40/ton CO2 0.63 -2.35
$50/ton CO2 0.65 -2.38

Note: Column 1 displays the fraction of the carbon tax revenue used to reduce the capital tax for different
values of subsistence energy, ē, and the carbon tax, τ c. The remaining revenue is used to increase the
progressivity of the labor tax. Column 2 displays the corresponding percent change in the Gini coefficient
on lifetime welfare from its value in the baseline. The middle values of ē and τ c equal the values from
the benchmark calibration in Table 1.

the capital tax rate for different values of subsistence energy, ē, and the carbon tax, τ c. The

second column reports the corresponding percent change in the Gini coefficient on lifetime

welfare from its value in the baseline. The middle values of ē and τ c equal the values from

the benchmark calibration in Table 1.

The different specifications imply that approximately 60 to 65 percent of the carbon

tax revenue under the optimal rebate is used to reduce the capital tax, and the remaining

35 to 40 percent is used to increase the progressivity of the labor tax. The corresponding

decrease in the welfare Gini ranges from 2.21 to 2.38 percent. When the carbon tax is more

regressive (e.g., ē is larger), the optimal policy uses relatively more of the revenue to unwind

that regressivity and increase the overall progressivity of the tax system, implying that a

smaller fraction of revenue is used to reduce the capital tax. Additionally, when the carbon

tax is bigger, the optimal policy uses a larger fraction of the revenue to decrease the capital

tax, and thereby unwind the additional distortions to the capital stock caused by the larger

carbon tax. More generally, Table 3 reveals that the qualitative patterns are similar across

specifications; regardless of the size of the carbon tax or its inherent regressivity, the optimal

policy combines a reduction in the capital tax with an increase in the progressivity of the

labor tax. The carbon tax paired with this combined rebate reduces the Gini coefficient on

lifetime welfare from its value in the baseline, raising equality.
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5.2 Increasing Labor-tax Progressivity vs. Lump-sum Rebates

Our finding that it is optimal to use a portion of the carbon-tax revenue to increase equality

ultimately hinges on the ability of the policymaker to rebate the carbon-tax revenue by

increasing the progressivity of the labor tax. In this section, we highlight that this result

stems from the fact that, by increasing the progressivity of the labor tax, policymakers can

target the revenue along two important margins: towards agents that (i) have low income

and (ii) are not retired.

To understand why it is important for the recycling mechanism to target low-income

agents, note that using any revenue to increase equality reduces the policymaker’s ability

to unwind the distortions caused by pre-existing taxes. Therefore, for it to be welfare-

maximizing to use any revenue to increase equality, the mechanism chosen must effectively

redistribute from high to low-welfare agents. Recall from the Gini coefficients in Table 2,

far more redistribution is achieved using just 38 percent of the revenue to increase in the

progressivity of the labor tax as opposed to returning all of the revenue through lump-sum

rebates. This is due to the fact that lump-sum rebates fail to directly target low-income

agents while the optimal policy exclusively lowers the labor tax for the lowest earners.

Importantly, by itself, the ability to target low-income agents does not make it optimal

to use carbon-tax revenues to increase equality. To demonstrate this point, we search for

a ‘restricted’ optimal policy in which the policymaker cannot change the progressivity of

the labor tax, but she can still increase equality by providing the direct rebate payments

which can vary with an agent’s total income (equation (8)). In this setting, we find that

it is optimal to exclusively return revenue through a reduction in the capital tax; none is

used for equality-increasing rebate payments. The reason that it is only optimal to increase

equality when the policymaker can increase the progressivity of the labor tax stems from

differences in how the increase in the labor-tax progressivity and the rebate payments affect

savings behavior. Importantly, agents receive the rebate payments in every year of life,

including after retirement. As a result, the rebate payment reduces an agent’s need to save

for retirement, crowding out capital. In contrast, agents only receive the rebate from the

increase in the labor-tax progressivity during their working years. Consequently, it does not

crowd out as much capital, and thus is less costly.

Similarly, by itself, the ability to target rebates towards working-age individuals does not

make it optimal to use carbon-tax revenues to increase equality. To highlight this point,

we search for a new restricted optimal policy in which the policymaker cannot increase the

progressivity of the labor tax, but she can provide uniform lump-sum rebates to working-age
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agents only. Again, the optimal policy in this case rebates all revenue through a reduction

in the capital tax.

It is only when we allow the policymaker to (i) target rebate payments to working-age

agents, and (ii) vary the rebate payment with the agent’s income that we find it is optimal

to combine reductions in the capital tax with equality-increasing rebate payments. In our

baseline scenario in which explicit age-dependent rebates are not an option, the ability to

increase the progressivity of the labor tax provides policymakers with a simple way in which

to target carbon-tax revenues towards low-income, working-age individuals.

5.3 The Effect of a Carbon Tax on Optimal Policy

At this point, it is worth stepping back and asking whether there is something unique about a

carbon tax that makes it optimal to recycle the revenue through a combination of a decrease

in the labor tax for low labor income earners and a reduction in the capital tax? Qualitatively,

the answer is no but quantitatively, the answer is yes. To highlight these points, we conduct

a different experiment. Instead of imposing a carbon tax, we assume that the government

receives an exogenous stream of revenue that exactly equals the amount that would be raised

by the carbon tax under the optimal policy. We search for the optimal way to recycle this

new stream of revenue back to agents.

Again, we find that expected welfare is maximized by recycling revenue through a combi-

nation of a reduction in the capital tax and a reduction in the average labor tax for low labor

income earners. Compared to the carbon tax experiment, we find that relatively more of the

exogenous stream of revenue should be used to decrease the labor tax for low labor-income

earners and less should used to reduce the capital tax. In particular, the optimal rebate

under the exogenous revenue stream only reduces the capital tax rate by three percentage

points, instead of by five percentage points, while the average labor tax falls for all agents

earning below 70 percent of the mean labor income, instead of 48 percent.

The quantitative differences between the optimal rebates of carbon tax revenue and the

exogenous revenue stream stem from the fact that the carbon tax itself depresses capital.16

Intuitively, the carbon tax reduces energy use, which, all else constant, decreases the marginal

product of capital, leading to lower aggregate savings. To mitigate the drop in capital in

the carbon-tax steady state, it is optimal to devote a larger share of revenue to reducing

the capital tax. Even so, a sizable portion of the carbon tax revenue is still used to increase

16If the revenue from the carbon tax is not recycled, and instead, say, thrown into the ocean, we find that,
compared to the baseline steady state, capital is reduced by 2.62 percent.

20



equality.

6 Conclusion

The environmental and public economics literature has long studied how to optimally design

a revenue-neutral carbon tax. However, this literature has typically focused on a small set of

blunt options for rebating carbon-tax revenues (e.g., reducing the labor or capital tax rate

versus providing lump-sum rebates). Moreover, much of the literature has abstracted from

heterogeneity and has focused exclusively on maximizing economic surplus.

In this paper, we use a lifecycle model with rich heterogeneity to search over a continuum

of rebate options to find the welfare maximizing way to recycle carbon-tax revenue. In con-

trast to the early recommendations from the double-dividend literature calling for carbon-tax

revenues to be returned exclusively through reductions in pre-existing distortionary taxes,

we find that it is optimal to use a sizable portion of the revenue to increase equality. Impor-

tantly, however, the welfare maximizing way to achieve a more progressive outcome is not

through the use of lump-sum rebates – the approach that is garnering the greatest support

among many involved in the policy-making process. Instead, we find that a more progressive

distributional outcome can be achieved with far lower welfare costs by rebating carbon-tax

revenues by increasing the progressivity of the labor tax.
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Appendix

A Definition of an equilibrium

Let zi,j,t = (j, ai,j,t, νi,j,t, ξi) denote the vector of household state variables and let Z de-

note the corresponding state space. We define a sequence-of-markets equilibrium for this

economy as a sequence of prices, {wt, rt, pet}∞t=0, allocations for each household i age j,

{ci,j,t, eci,j,t, ai,j,t+1, hi,j,t}∞t=0, allocations for firms, {Ey
t , K

y
t , N

y
t , K

e
t , N

e
t }∞t=0, a Social Security

tax, {τ st }∞t=0, a carbon tax, τ c, transfers, {T at , T ct }∞t=0, and the distribution of individuals over

the state space, Φt, such that the following holds:

1. Given prices, household allocations maximize:

c̃1−θ1i,j,t

1− θ1
− χ

h
1+ 1

θ2
i,j,t

1 + 1
θ2

+ E


J∑

k=j+1

βk−j
k−1∏
q=j

ψq

 c̃1−θ1i,j,t

1− θ1
− χ

h
1+ 1

θ2
i,j,t

1 + 1
θ2

 ,

subject to the budget constraint:

ci,j,t + (pet + τ ct )eci,j,t + ai,j,t+1 = µi,j,thi,j,twt − T si,j,t + (1 + rt(1− τ k))(ai,j,t + T at )

− T ht
(
µi,j,thi,j,twt − 0.5T si,j,t

)
+ T ct for j < jr

ci,j,t + (pet + τ ct )eci,j,t + ai,j,t+1 = bss(xi,j,t) + (1 + r(1− τ k))(ai,j,t + T at ) + T ct for j ≥ jr

the evolution of labor productivity (equations (2) and (3)) and the non-negativity

constraints, ct ≥ 0, at ≥ 0, ht ≥ 0, and ect ≥ 0.

2. Given prices, final-good producer allocations solve the profit maximization problem for

the representative final good firm:

max
Ky
t ,N

y
t ,E

y
t

Ayt (K
y
t )αy(Ny

t )1−αy−ζ(Ey
t )ζ − wtNy

t − (rt + δ)Ky
t − (pet + τ c)Ey

t

3. Given prices, energy producer allocations solve the profit maximization problem for

the representative energy firm:

max
Ke
t ,N

e
t

petA
e
t (K

e
t )
αe(N e

t )1−αe − wtN e
t − (rt + δ)Ke

t .
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4. The markets for capital, labor, and energy clear:

(1 + n)(Ky
t +Ke

t ) =

∫
ai,j,t dΦt

Ny
t +N e

t =

∫
µi,j,thi,j,t dΦt

Et = Ey
t +

∫
eci,j,t dΦt.

5. The government budget balances:

Gt =

∫ [
τ krt(ai,j,t + T at ) + T ht

(
µi,j,thi,j,twt − 0.5τ s min(yhi,j,t, y

h,max)
)

+ τ ct e
c
i,j,t

]
dΦt + τ ctE

y
t − T ct .

6. Transfers from accidental bequests satisfy:

(1 + n)T at+1 =

∫
(1− ψj)ai,j,t+1 dΦt.

7. The Social Security budget clears:

τ s =

∫
T s(xi,j,t)ΦZ|j≥jr∫

[min(yhijt, y
h,max)∂ΦZ|j<jr ]

.

A stationary competitive equilibrium consists of prices, {w, r, pe}, allocations for firms,

{Ey, Ky, Ny, Ke, N e}, a social security tax, τ s, a carbon tax, τ c, and transfers, {T a, T c},
that are constant over time and satisfy the conditions 2-7. Allocations for households,

{ci,j,t, eci,j,t, ai,j,t+1, hi,j,t}, satisfy condition 1. The distribution of individuals over the state

space, Φ, is stationary.

B Calibration

We use a five year average from 2013-2017 for all parameter values and targets that we

calculate directly from the data. Data on investment, output, and capital are from NIPA

Tables 1.1, 1.1.5, and 1.5. We define investment as the sum of investment in private fixed

assets and consumer durables and we define capital as the sum of private fixed assets and

consumer durables. Data on government budget outlays comes from the CBO.17 Since our

17See https://www.cbo.gov/about/products/budget-economic-data.
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model includes Social Security separate from government spending, we calculate government

spending as the difference between total government outlays and Social Security outlays.

Data on the carbon intensity, energy prices, and energy consumption are from the EIA.

Using data from the Consumer Expenditures Survey (CEX) spanning 2013 through 2017,

we find that the share of expenditures going towards energy is 33.84 percent lower in house-

holds in the top half of the total expenditure distribution compared to the bottom half of

the total expenditure distribution. However, rather than setting ē to directly match this

difference in the energy expenditure shares, we first must account for the fact that the vari-

ance in total expenditures in the CEX is larger than in our model.18 In particular, the

percent difference in total expenditures between the top and bottom half of the expenditure

distribution is 288.8 percent in the CEX and 66.7 percent in our model. Following Fried

et al. (2018), we deflate the energy expenditure share difference observed in the CEX by
66.7
288.8

= 0.231. To target an energy expenditure share difference between the top and bottom

halves of the expenditure distribution of 7.81 percent, we choose ē = 0.0013.

We choose energy-share parameter γ to target the ratio of energy consumed directly

by households relative to total energy consumed in the US economy. We calculate the

empirical value of Ec/E from data on total primary energy consumption from the Energy

Information Administration (EIA). Total fossil energy consumption, E, equals total primary

energy consumption of coal, oil, and natural gas reported in EIA Table 1.1. Total fossil energy

consumption by individuals, Ec, equals total primary consumption of coal, oil, natural gas

by the residential sector (see EIA Table 2.2).19 The average empirical value of Ec/E over

the most recent five years of data, 2013-2017, equals 0.183.

C Computational Experiments

In the simulations, the carbon tax raises the price of the energy-good which reduces the

relative price of the numeraire. Since Social Security benefits are denominated in terms of

the numeraire, the purchasing power of the Social Security benefits falls from its value in

18The key reason for the smaller differential in total expenditures in our model is that the productivity
shocks are assumed to be log normal. This distributional assumption, while standard in the literature, results
in our model failing to capture the extreme top tail of the income distribution. We normalize the CEX data
by the square root of family size in all of the calculations.

19The EIA data report residential energy consumption of coal, oil, natural gas and electricity. To convert
residential electricity consumption to primary energy consumption of coal, oil, and natural gas, we calculate
household electricity use relative to total electricity use (see EIA Table 7.6). We multiply this fraction the
total amounts of coal, oil, and natural gas used in the electricity sector (see EIA Table 2.6).
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the baseline. In practice, the U.S. government adjusts Social Security payments each year to

ensure that the purchasing power remains constant. Consistent with this policy, we adjust

the Social Security payment in each simulation to ensure that the retiree can buy the same

bundle of energy and non-energy goods as she could in the baseline steady state. Specifically,

Social Security payments in each simulation equal Social Security payments in the baseline

times ce(pe+τc)
cepe+c

where ce and c are the baseline values of energy and non-energy consumption,

respectively. We adjust the Social Security tax to ensure that the Social Security budget

balances.
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