Understanding Trade Fragmentation, Accessible Data

Figure 1: Effect of Geopolitical Distance on Trade Flows

Effect of Geopolitical Distance on Trade Flows over Time (Full Sample)
Coefficient on Total Geopolitical Distance

End of 10-Year Window Coefficient Upper Bound Lower Bound
1999 0.0033673 0.0436022 -0.0368677
2000 0.016123 0.0579097 -0.0256637
2001 0.0302788 0.0727246 -0.012167
2002 0.0493095 0.0910934 0.0075255
2003 0.057094 0.10169 0.012498
2004 0.0705325 0.116352 0.024713
2005 0.0964175 0.1537329 0.0391022
2006 0.0951084 0.1570315 0.0331853
2007 0.0736199 0.1298165 0.0174234
2008 0.0807207 0.1402636 0.0211778
2009 0.0734322 0.1314801 0.0153842
2010 0.0307859 0.0843768 -0.022805
2011 0.0123421 0.0600303 -0.035346
2012 0.0070725 0.0553483 -0.0412034
2013 -0.0326986 0.0246521 -0.0900493
2014 -0.0508124 0.003955 -0.1055797
2015 -0.0492514 -0.009912 -0.0885909
2016 -0.0487024 -0.0088686 -0.0885363
2017 -0.0283929 0.0128944 -0.0696801
2018 -0.0060949 0.0349962 -0.047186
2019 0.0129663 0.0656637 -0.039731
2020 0.0123392 0.0714432 -0.0467647
2021 0.0064359 0.0687855 -0.0559138
2022 -0.020842 0.042224 -0.083908
2023 -0.0556456 0.0052134 -0.1165046

Effect of Geopolitical Distance on Trade Flows over Time (ex. China)
Coefficient on Total Geopolitical Distance

End of 10-Year Window Coefficient Upper Bound Lower Bound
1999 -0.0038879 0.0334188 -0.0411946
2000 0.0044601 0.0429399 -0.0340198
2001 0.0219806 0.0613922 -0.0174309
2002 0.0442968 0.0838838 0.0047098
2003 0.0481484 0.0894324 0.0068644
2004 0.0547742 0.0929242 0.0166241
2005 0.0760711 0.1193215 0.0328207
2006 0.0773693 0.1248114 0.0299271
2007 0.0421275 0.0839783 0.0002768
2008 0.0410373 0.0793379 0.0027368
2009 0.0436005 0.0759238 0.0112772
2010 0.0133971 0.0432042 -0.0164101
2011 0.0260256 0.0554936 -0.0034423
2012 0.0276238 0.0594769 -0.0042292
2013 0.0029741 0.0390406 -0.0330925
2014 -0.0174743 0.0206573 -0.0556059
2015 -0.0552922 -0.0181822 -0.0924023
2016 -0.0664024 -0.0303743 -0.1024305
2017 -0.0651839 -0.0284258 -0.101942
2018 -0.0579893 -0.0233199 -0.0926587
2019 -0.074603 -0.0398699 -0.1093361
2020 -0.0852909 -0.0484155 -0.1221663
2021 -0.0986208 -0.0622124 -0.1350292
2022 -0.1227615 -0.0843382 -0.1611848
2023 -0.1398762 -0.0937061 -0.1860463

Note: Coefficient estimates from rolling-window PPML regressions (10-year window, 1990-2023), with 95% confidence intervals. Geopolitical distance measures are based on estimates from Bailey et al. (2017).

Source: Airaudo et al (2025), UN Comtrade, Authors’ calculations.

Return to text

Figure 2: Import Penetration Across Advanced Economies and China, 2014-2024

Chinese Import Penetration in Advanced Economies
Percent of each country's GDP

Country 2014 2024
U.S. 2.7 2.1
E.U. 1.6 2.7
U.K. 2.1 1.4
Canada 2.9 2.8

Advanced Economies Import Penetration in China
Percent of Chinese GDP

Country 2014 2024
U.S. 1.2 0.2
E.U. 0.8 0.1
U.K. 2 0.2
Canada 1.2 0.2

Note: Key identifies in order from left to right.

Source: UN Comtrade, Authors’ calculations.

Return to text

Figure 3: Global concentration of critical mineral supply chains, 2023

Extraction

Critical Mineral Country Percent
Cobalt Democratic Republic of Congo 65.47122602
Cobalt Rest of world 34.52877398
Copper Chile 23.59728276
Copper Democratic Republic of Congo 11.89882753
Copper Peru 11.74599366
Copper Rest of world 52.75789605
Lithium Australia 43.39525284
Lithium Chile 23.94220846
Lithium China 17.54385965
Lithium Rest of world 15.11867905
Magnet rare earth elements China 61.1878453
Rare earths Rest of world 29.97237569
Rare earths United States 8.839779006

Processing

Critical Mineral Country Percent
Cobalt China 76.72028597
Cobalt Finland 8.400357462
Cobalt Rest of world 14.87935657
Copper China 43.84459413
Copper Rest of world 56.15540587
Lithium Chile 26.31877482
Lithium China 64.60578559
Lithium Rest of world 9.075439592
Rare earths China 92.13630406
Rare earths Rest of world 7.863695937

Note: Individual country shares shown when larger than 10 percent. RoW is rest of the world. DRC is Democratic Republic of the Congo, FIN is Finland, and PER is Peru.

Source: International Energy Agency.

Return to text

Figure 4: Sectoral heterogeneity in the association between trade and geopolitical distance

5-Year Rolling Regression for FRB Forecasted Countries
Coefficient on Economic Geopolitical Distance

End of 5-Year Window Tech Class Coefficient Upper Bound Lower Bound
2006 High Tech -0.091491195 -0.007070834 -0.17591156
2007 High Tech -0.109163917 -0.020491494 -0.19783634
2008 High Tech -0.110698597 -0.020162363 -0.20123483
2009 High Tech -0.112916551 -0.025578653 -0.20025444
2010 High Tech -0.107145341 -0.023217907 -0.19107278
2011 High Tech -0.095139401 -0.017129391 -0.17314941
2012 High Tech -0.084794104 -0.012051082 -0.15753713
2013 High Tech -0.078934381 -0.008054262 -0.1498145
2014 High Tech -0.086689087 -0.018891206 -0.15448697
2015 High Tech -0.096329566 -0.026300212 -0.16635892
2016 High Tech -0.107071928 -0.036077671 -0.17806618
2017 High Tech -0.118906242 -0.050734058 -0.18707843
2018 High Tech -0.128864902 -0.063071862 -0.19465794
2019 High Tech -0.13180756 -0.065051295 -0.19856383
2020 High Tech -0.14479842 -0.079127215 -0.21046962
2021 High Tech -0.157496825 -0.090319782 -0.22467387
2022 High Tech -0.17812726 -0.10312261 -0.25313193
2023 High Tech -0.209607665 -0.12331513 -0.2959002
2024 High Tech -0.250903919 -0.14646518 -0.35534266
2006 Low Tech 0.064787094 0.18876655 -0.059192367
2007 Low Tech 0.057032947 0.18779682 -0.073730916
2008 Low Tech 0.06110541 0.1911331 -0.068922274
2009 Low Tech 0.074687392 0.20596389 -0.056589104
2010 Low Tech 0.092644697 0.22081837 -0.035528969
2011 Low Tech 0.088212136 0.21105108 -0.034626812
2012 Low Tech 0.067597297 0.18658791 -0.051393319
2013 Low Tech 0.046036612 0.16124326 -0.069170028
2014 Low Tech 0.016852029 0.12281093 -0.089106873
2015 Low Tech -0.003376722 0.10218801 -0.10894145
2016 Low Tech -0.015009463 0.088314041 -0.11833297
2017 Low Tech -0.018662575 0.081566751 -0.1188919
2018 Low Tech -0.018116996 0.080523349 -0.11675734
2019 Low Tech -0.011616185 0.089689434 -0.1129218
2020 Low Tech -0.014297373 0.083901607 -0.11249635
2021 Low Tech -0.01622254 0.08194492 -0.11439
2022 Low Tech -0.028208583 0.075070277 -0.13148744
2023 Low Tech -0.042277596 0.071058281 -0.15561347
2024 Low Tech -0.07029578 0.062666357 -0.20325792

Note: Coefficient estimates from rolling-window regressions with 95% confidence intervals. Sector classification into high and low-tech comes from Airaudo et al (2025).

Source: Airaudo et al (2025), UN Comtrade, Authors’ calculations.

Return to text

Last Update: December 12, 2025